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ABSTRACT 

Capital investment reduction, exergetic efficiency improvement and material compatibility issues 

have been identified as the primary techno-economic challenges associated, with the near-term 

development and deployment of thermal energy storage (TES) in commercial-scale concentrating solar 

power plants. Three TES techniques have gained attention in the solar energy research community as 

possible candidates to reduce the cost of solar-generated electricity, namely (1) sensible heat storage, (2) 

latent heat (tank filled with phase change materials (PCMs) or encapsulated PCMs packed in a vessel) and 

(3) thermochemical storage. Among these the PCM macro-encapsulation approach seems to be one of the 

most-promising methods because of its potential to develop more effective energy exchange, reduce the 

cost associated with the tank and increase the exergetic efficiency. However, the technological barriers to 

this approach arise from the encapsulation techniques used to create a durable capsule, as well as an 

assessment of the fundamental thermal energy transport mechanisms during the phase change. 

A comprehensive study of the energy exchange interactions and induced fluid flow during 

melting and solidification of a confined storage medium is reported in this investigation from a theoretical 

perspective. Emphasis has been placed on the thermal characterization of a single constituent storage 

module rather than an entire storage system, in order to, precisely capture the energy exchange 

contributions of all the fundamental heat transfer mechanisms during the phase change processes. Two-

dimensional, axisymmetric, transient equations for mass, momentum and energy conservation have been 

solved numerically by the finite volume scheme. 

Initially, the interaction between conduction and natural convection energy transport modes, in 

the absence of thermal radiation, is investigated for solar power applications at temperatures (300

400 ). Later, participating thermal radiation within the storage medium has been included in order to 

extend the conventional natural convection-dominated model and to analyze its influence on the 
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melting and freezing dynamics at elevated temperatures (800 850 ). A parametric analysis has been 

performed in order to ascertain the effects of the controlling parameters on the melting/freezing rates and 

the total and radiative heat transfer rates at the inner surface of the shell. The results show that the 

presence of thermal radiation enhances the melting and solidification processes. 

Finally, a simplified model of the packed bed heat exchanger with multiple spherical capsules 

filled with the storage medium and positioned in a vertical array inside a cylindrical container is analyzed 

and numerically solved. The influence of the inlet mass flow rate, inner shell surface emissivity and PCM 

attenuation coefficient on the melting dynamics of the PCM has been analyzed and quantified. 
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CHAPTER 1: INTRODUCTION 

1.1. Discussion of the Problem 

The urgent need of sustainable and clean energy sources to secure the future energy production as 

well as expand the existing electricity generation market has motivated the rapid growth of commercial-

scale concentrating solar power (CSP) plants during recent years [1, 2, 3]. The potential integration of 

thermal energy storage (TES) in a CSP plant becomes extremely critical to dispatch power when solar 

irradiation is not available, allowing the plant to operate in a cost-effective fashion and consequently 

reduce the plant levelized electricity cost. 

The current commercial TES option for CSP systems uses synthetic oil or molten nitrate salts as 

the storage media where energy is stored via sensible heat [4, 5]. In these systems, large amount of 

storage material is used and, therefore, large tanks are required, thus increasing the overall cost of the 

system. In addition to the economic drawback, technical barriers associated with the low exergetic 

efficiency and material compatibility issues for molten salts [6, 7] are key factors that necessitate the 

near-term development of advanced thermal energy storage concepts.  

Numerous research and development initiatives have been directed towards single tank 

thermocline systems for sensible heat storage [8, 9, 10] in an effort to reduce the cost of the TES system; 

however the primary challenge is the temperature degradation within the system, which results in lower 

exergetic efficiency [6]. In that context, the use of phase change materials for latent heat energy storage is 

an excellent option, because of its high energy density which reduces the size of the storage tank, and its 

potential to increase the energy and exergy efficiency in conventional steam Rankine cycles [11, 12, 13]. 

Special attention has been devoted to develop low cost and industrially scalable encapsulation 

techniques to confine the PCMs in spherical or cylindrical capsules to be used in a packed bed or shell 

and tube heat exchangers [14, 15, 16, 17].  
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The technological barriers of this approach arise from (1) the material compatibilities between the 

PCM and the shell, as well as the shell and the heat transfer fluid (HTF), (2) the ability to produce durable 

capsules to withstand continuous thermal cycles at elevated temperatures, (3) the assessment of the 

fundamental thermal energy transport mechanisms during the phase change processes, (4) the low PCM 

thermal conductivity that limits the contribution of conduction, particularly during solidification [14, 15].  

One of the challenging problems in thermal modeling of the storage tanks containing 

encapsulated PCMs, is the energy exchange process between the HTF and the PCM capsules, which is 

commonly modeled using an effective thermal conductivity or an overall heat transfer coefficient term in 

the energy equation [16, 17]. Depending on the accuracy of the model, this term may include heat transfer 

by forced convection between the HTF and the external surface of the shell, heat conduction through the 

shell wall and all the energy contributions within the PCM during the phase change process.  

In general, the interaction of forced convection and shell conduction is estimated based on 

empirical correlations from the packed bed heat exchanger literature [18, 19] and the thermal resistance 

analysis. However, prediction of the energy interactions within the PCM are usually based on a pure 

conduction phase change model or pure natural convection correlations for enclosed fluids in the absence 

of phase change and thermal radiation. That may not accurately describe all the appropriate physics of the 

problem. 

The objective of the present investigation is to develop and solve a comprehensive model that 

accurately predicts the melting and solidification processes of an encapsulated PCM in order to quantify 

and correlate the simultaneous contributions of all the fundamental energy transport modes. 

1.2. Literature Survey 

1.2.1. Melting of a Confined PCM by Conduction and Natural Convection 

A number of studies have been reported in the literature associated with melting within spherical 

containers and can be classified based on the dominant heat transfer mechanism that drives the phase 

change process. A closed form analytical solution has been developed by Paterson [20], for the one-

dimensional spherical melting problem, considering stagnant liquid phase, which means that, the transfer 
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of heat within the molten material is purely by conduction. A numerical solution of the aforementioned 

problem was presented by Grimado and Boley [21]. The absence of buoyancy induced natural convection 

in the melt layer and the assumption that the solid fraction of the PCM remains at the center of the sphere 

are the main drawbacks of this model. 

Moore and Bayazitoglu [22] analyzed the unconstrained melting (vertical motion of the solid 

phase due to its higher density) of a low melting temperature PCM. The mathematical model was solved 

using a finite difference technique. Good agreement was found between the numerical results and the 

experimental data for Ste=0.05 and 0.1 with a maximum deviation of about 10 percent in the predicted 

interface position. Roy and Sengupta [23] examined the influence of gravity-induced convection in the 

melt of a PCM in a spherical enclosure and demonstrated the quasi-steady fluid flow in the upper part of 

the sphere. Bahrami [24] performed heat transfer experiments for the melting of a phase change medium 

in a Pyrex glass spherical capsule. The free expansion of the medium in the void space within the sphere 

was permitted. The PCM used in the study was 99% pure n-eicosane paraffin. The study concluded that 

the melting process was significantly affected by the movement of the solid toward the base of the sphere.  

Fomin and Saitoh [25] presented numerical and analytical investigations of the melting process in 

a spherical capsule. N-octadecane was used as the PCM while an extension of the mathematical approach 

developed by Bareiss and Beer [26] was used to set up the numerical model. A sinusoidal temperature 

profile was employed as the boundary condition. The approximate analytical solution was found to be in 

good agreement with the numerical results. The discrepancy in the results was within 15%. 

Khodadadi and Zhang [27] demonstrated that melting in the upper part of a PCM sphere is much 

faster than in the lower part due to buoyancy induced convection. They also noted that conduction is 

predominant only during the early melting process and highlighted the use of Rayleigh number to 

characterize convection in this problem. Regin et al. [28] analyzed numerically and experimentally the 

heat transfer inside a spherical capsule placed in a convective environment. A conduction-dominated 

mathematical model with an effective conductivity for the PCM that accounts for the natural convection 

effect was used for the numerical calculations.  
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The study concluded that the Stefan number and the radius of the capsule have significant effects on the 

total melting time. 

Assis et al. [29] reported numerical and experimental analyses of melting in an open spherical 

enclosure. A combined PCM-air system was analyzed with the air space in the upper part of the shell to 

account for the volume expansion during the phase change process. The model took into account the 

density difference between the solid and liquid PCM, natural convection in the molten PCM and the air, 

and the vertical motion of the solid PCM. Observations from the numerical model were validated through 

experiments using a low melting point wax in a glass container, submerged in a water bath. The Nusselt 

number and melt fraction results were presented as a function of the Fourier, Stefan, and Grashof 

numbers. 

Tan [30] reported an experimental comparison between the constrained and unconstrained 

melting processes of n-octadecane inside a glass container. Later, Tan et al. [31] performed numerical 

simulations and experiments on a vertically constrained paraffin wax sphere. They confirmed the quasi-

steady behavior of the upper part of the sphere while observing the unstable melting pattern of the bottom 

of the sphere. In this region, a convective rising hot “jet” is reported as well as a chaotic convective 

behavior. The authors highlighted an underestimation of waviness at the bottom part of the sphere during 

experiments. They concluded that the influence of the support structure used to constrain the PCM is non-

negligible. Hosseinizadeh et al. [32] reported a numerical investigation of melting of nano-enhanced 

phase change material in a spherical container. 

The effect of different nano-particle volume fractions (0, 0.02 and 0.04) on the melting rate was 

analyzed. The computational domain was defined similar to that developed by Assis et al. [29]. 

Simulation results show a melting rate enhancement of the nano-enhanced phase change materials with 

respect to the conventional PCM due to higher thermal conductivity. A transient two-dimensional 

analysis of heat transfer during the melting process of encapsulated sodium nitrate in stainless steel 

cylindrical capsules has been reported by Zhao et al. [33].   
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Saitoh et al. [34, 35] analyzed the natural convection-dominated melting in a spherical capsule for 

n-octadecane and water, numerically and experimentally. The mathematical model was solved by a finite 

difference method employing the boundary fixing method to solve the motion of the solid-liquid 

interface. Hosseinizadeh et al. [36] presented a numerical analysis on the melting process of n-octadecane 

in an open spherical glass container. A uniform temperature boundary condition was imposed at the outer 

wall of the shell. The Computational findings were validated with the experimental results reported by 

Tan [30]. Good agreement was found between the numerically predicted results and the experimental data 

for the case where the solid phase motion was not restricted. Rizan et al. [37] reported an experimental 

investigation of n-octadecane melting inside a spherical shell subjected to a uniform heat flux at the outer 

surface of the shell. In this study, the effect of Stefan number on the melt fraction rate is highlighted. 

The melting of Sodium Nitrate ( ) in a square cavity has been explored numerically by 

Wang et al [38] and a benchmark solution for the case of 10  and 0.1 has been presented. 

An alternate TES approach based on heat pipe technology has been proposed by Shabgard et al. [39] 

using  as PCM. A thermal network model was used to predict the transient response of the system. 

Two different configurations were analyzed and the influence of the orientation on the thermal response 

of the system was evaluated. 

In addition, a number of experimental and analytical investigations have been performed on heat 

transfer and buoyancy driven flow during melting of ice spheres. However, since the dynamics of the 

phase change process in ice is opposite in trend to most of the PCMs that are suitable for solar energy 

applications, a detailed description of these studies will not be included here. More information can be 

found in Dumore et al. [40], Vanier and Tien [41] and Hao and Tao [42]. 

1.2.2. Melting of a Confined PCM by Conduction and Radiation 

The problem of heat transfer by radiation in a gray medium confined between two concentric 

black spheres has been widely reported in the heat transfer literature. A simplified analytical method, 

based on the diffusion approximation, for calculating radiation heat transfer in the aforementioned system 

has been presented by Konakov [43].   
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Sparrow et al. [44] have discussed the contribution of the absorption coefficient and the size of 

the container on the medium temperature distribution. In the model, an absorbing-emitting, gray gas was 

assumed as the participating medium while uniform and equal temperatures were imposed at the shell 

surfaces. A uniform internal heat generation rate per unit volume through the gas was also considered. 

Numerical predictions were reported, and the study concluded that the gas temperature variations are 

greater when the absorption coefficient increases for a fixed geometry. 

An approximate solution of the previously described problem has been reported by Dennar and 

Sibulkin [45] and Chou and Tien [46] based on an extension of the Milne-Eddington approximation 

(moment method) originally developed for plane layers. Tong and Swathi [47] evaluated the accuracy of 

the spherical harmonic numerical method by solving the same problem. In their model, scattering of 

radiation within the medium was considered, and the influence of the differential approximation 

technique on the wall heat fluxes was presented.  

Ryhming [48], Viskanta and Crosbie [49]. and Jia et al. [50] extended the analysis of Sparrow et 

al. [44] to include a uniform but different temperature at the bounded surfaces. It should be mentioned 

that in the results reported by [48] three values of the inner to outer wall temperature ratios / = 2, 5 

and 25 were reported. 

Viskanta and Merriam [51] performed a parametric investigation on the steady state conduction 

and radiation heating and cooling processes of an absorbing, emitting, scattering and gray medium 

enclosed in the space between two black, isothermal and concentric spheres. The influences of the Planck 

number, optical thickness, surface emissivities, inner to outer radius ratio, internal heat generation per unit 

volume and inner to outer wall temperature ratios were investigated. The study highlighted the strong 

influence of the surface emissivities on the local radiation heat transfer flux and reported an increase of 

the total heat flux at the inner surface of the system when the Planck number and the optical thickness 

decreases and increases respectively. The transient solution of the model reported by [51] has been 

obtained by Chu and Weng [52]. In their study, the equation of radiative transfer was numerically solved 

by the spherical harmonic method.  
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The transient cooling process of a stationary spherical gas mass by radiation was analyzed by 

Viskanta and Lall [53]. The energy transfer by conduction and convection was neglected, and a numerical 

solution of the energy equation was obtained by the method of moments. The effect of optical thickness 

of the gas on the local heat flux and temperature distribution was presented. 

The Galerkin method was used by Thynell and Özisik [54] to solve the steady state condition of 

the problem reported by [53]. Tsai and Özisik [55] analyzed the transient combined conduction and 

radiation problem in an absorbing, emitting and isotropically scattering solid sphere subjected to a 

uniform temperature at the black boundary surface. The effects of the single scattering albedo and the 

radiation to conduction parameter on the temperature distribution and heat fluxes have been discussed. 

Siewert and Thomas [56] reported a steady state solution of the problem formulated by [55]. In 

their study, a mathematical model was reduced based on a sphere to plane transformation technique, and 

the spherical harmonics method was employed to solve the reduced system numerically. Bayazitoglu and 

Suryanarayana [57] numerically analyzed the influence of the Planck number and the optical thickness on 

the transient cooling process of a solid sphere surrounded by a gray, emitting, absorbing and isotropically 

scattering gas. Thynell [58] considered the influence of anisotropic scattering on the combined conduction 

and radiation heat transfer on a spherical medium. Reported studies on the influence of thermal radiation 

in non-opaque media during phase change processes have been largely limited to the treatment of 

solidification in planar systems [59, 60, 61], because of its simplicity and the fact that the contribution of 

natural convection can be justifiably ignored in this process [62, 63]. 

1.2.3. Solidification of a Confined PCM by Conduction 

An extensive literature review of the reported solutions of the PCM solidification problem reveals 

that the most commonly analyzed model assumes that the medium is initially at the phase change 

temperature. Therefore, no heat transfer is allowed across the liquid phase, and the heat only flows in the 

solid portion. This simplified model is known as the single phase Stefan problem. Closed-form, semi-

analytical solutions of this problem were presented by a number of investigators [64, 65, 66, 67, 68, 69, 

70, 71] based on the similarity variable approach, asymptotic theory and parameter-perturbation methods.
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Tao [72] reported a numerical solution of the single phase Stefan problem. The formulation in 

which the presence of temperature gradients across the liquid phase is considered, has been termed the 

two phase Stefan problem and has been experimentally and numerically analyzed, during freezing in 

vertical tubes, by Sparrow and Broadbent [73] and Sparrow and Ohkubo [74] respectively. These studies 

conclude that an initial superheating of the liquid moderately diminishes the frozen mass and the 

associated latent energy extraction at small times, but has a small effect on these quantities at large times. 

Also good agreement was found between the numerical predictions and the experimental results. 

An extension of the single phase Stefan problem has been presented by McCue et al. [75]. In their 

model the initial temperature of the system was above the phase change temperature. However, only heat 

conduction was taken into account through the liquid phase. The study concludes that for small Stefan 

number conditions, the temperature within the inner liquid phase rapidly decreases to the phase change 

temperature. Consequently, heat conduction within the liquid does not affect the solidification process. 

Ismail and Henriquez [76] performed a parametric analysis on the single phase Stefan problem 

for water confined in a spherical shell. They discussed the influence of the capsule size, shell material, 

shell thickness and outer surface boundary condition on the PCM solidification rate. The study concludes 

that an increase of the Biot number at the external surface of the shell decreases the solidification time. 

Freezing experiments of n-hexadecane encapsulated in spherical shells have been reported by 

Chan and Tan [77]. The evolution of the solidification phase via visualization front is presented for 

different outer surface and initial temperatures. Their study concludes that the solidification phase front 

progresses concentrically inwards from the colder outer surface of the sphere. Regin et al. [78] presented 

a numerical analysis of the solidification process of paraffin wax within a horizontal cylindrical capsule 

externally heated by a convection boundary condition.  

The influence of the PCM volume reduction during solidification in a partially filled spherical 

shell has been studied by Assis et al. [79]. In their model, the domain was initially partially filled with 

liquid paraffin wax, with air in the remaining volume. Numerical results and experimental observations 

show that an upper void space is created inside the capsule due to PCM volume reduction during freezing.
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The study also concludes that natural convection heat transfer in the liquid phase is negligible for Stefan 

numbers below 1. Diffusion-controlled freezing of a micro encapsulated PCM has been analyzed by Yang 

and Zhao [80]. 

The influence of thermal radiation on the single phase Stefan problem for non-opaque media have 

been largely limited to planar systems [81, 82, 83, 84] while the problem in the spherical media has 

received little attention; especially when all the fundamental heat transfer modes are simultaneously 

present. 

1.2.4. Objective and Scope 

As presented in the literature review, the available solutions for the phase change problem do not 

fully reflect the physical reality or may not be fully applicable to thermal energy storage in concentrating 

solar power plants. In this context, the primary objective of this study is to investigate the simultaneous 

interaction of all the fundamental energy transport modes during the melting and freezing of a phase 

change material confined in spherical and cylindrical shells.  

The main differentiating aspects of this investigation with the previously reported studies include: 

(a) more realistic and detailed physical representation of the encapsulated cell considering a closed 

capsule and the simultaneous interaction of conduction, natural convection and participating thermal 

radiation, (b) analysis of the capsule internal pressure variation due to volumetric expansion during the 

phase change process, (c) development of correlations between heat transfer and melting fraction with 

dimensionless numbers at relatively high melting temperatures, (d) analysis of a simplified PCM 

encapsulated packed bed latent heat storage system that accounts for all the fundamental heat transfer 

modes within the capsule and includes a time and position dependent heat transfer coefficient and free 

stream temperature as a boundary condition at the outer shell wall. 

Except for the studies reported by [85, 86] for the multi-mode heat transfer during melting in a 

square and a rectangular cavity respectively, no similar work has been reported in this field especially in 

curved media.   
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The primary motivation of this investigation is to provide additional information about the key 

elements in any phase change problem, i.e., solid-liquid interface position and phase distribution at a 

given time after the application of a thermal driving force, particularly under operating thermal conditions 

related to thermal energy storage for concentrating solar power plants. 

The following specific tasks have been performed in order to accomplish the objectives of this 

study: 

 Development of an analytical model capable of predicting simultaneous conduction and 

natural convection during melting of Sodium Nitrate confined in a spherical capsule. Two 

different solid PCM distributions inside the container have been investigated in this task for 

completely and partially filled capsule configurations. In the completely filled 

configuration, the solid storage material initially occupies all the capsule volume while, in 

the partially filled model, 90% of the capsule volume is initially filled with the solid PCM 

and the remaining volume is occupied by air. Schematics of the considered physical 

situations at the initial state are presented in Figure 1a and 1b. Effects of the main 

controlling parameters on the thermal performance of the capsules of various diameters (20, 

30, 40 and 50 mm) are investigated, and the results are presented in chapter 2. 

 

 
a) Completely filled capsule 

 
b) Partially filled capsule. 

 
Figure 1 Schematic of the analyzed configurations 

 

 Extension of the aforementioned mathematical model to include thermal radiation within 

the PCM during the solidification process of Sodium Nitrate.   
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Chapter 3 presents the results of the influence of simultaneous conduction, convection 

and thermal radiation on the freezing dynamics of a non-opaque media, with spectral 

dependence on its optical properties, encapsulated in a closed spherical shell at relatively 

high temperatures, in order to estimate the induced error in the solutions where 

participating thermal radiation within the PCM has been neglected. 

 Development of a numerical methodology for predicting the energy exchange process 

during melting of Sodium Chloride encapsulated in a spherical capsule at elevated 

temperatures with enhanced radiative properties. It is presumed that at higher operating 

temperatures ( 800 ) radiative heat transfer becomes significant when compared to the 

other fundamental heat transfer modes. Consequently, the low thermal conductivity 

problem that penalizes the conduction energy transport during the melting and 

solidification processes can be overcome, particularly for transparent PCMs, by seeding 

the PCM with appropriate amounts of radiation absorbers. In this approach, an infra-red 

transparent PCM with tailored absorptance for enhanced radiative transfer is encapsulated 

in a spherical shell with a highly emissive coating on the inner surface. The results of a 

comprehensive parametric analysis are presented in Chapter 4. 

 Development of a simplified model of the packed bed heat exchanger capable of 

predicting simultaneous energy exchange during melting of a non-opaque media in 

multiple spherical capsules positioned in a vertical array inside a cylindrical container. 

This model is an extension of the single capsule configuration presented in the previous 

chapters and also presents a valuable additional contribution to the knowledge of thermal 

modelling of packed bed heat exchangers. Chapter 5 presents the results of this simplified 

model. 

Finally, conclusions about the study are summarized, and recommendations for further study in 

this area are also suggested in Chapter 6. 
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CHAPTER 21: MELTING OF SODIUM NITRATE IN A SPHERICAL SHELL 

In this chapter, a numerical model has been developed to simulate the heat transfer and fluid 

dynamics during the melting of sodium nitrate encapsulated in a metallic spherical shell and subjected to 

a constant temperature boundary condition at the outer wall of the shell. Although this chapter primarily 

focuses on NaNO3, with a melting point of 306.8 ºC, the proposed numerical model will be extended in 

later chapters to predict the melting process of other PCMs with different encapsulation materials and 

under different boundary conditions. 

2.1. Physical Situation and Mathematical Model Completely Filled Model 

The considered system is schematically shown in a cross-sectional view in Figure 1a and consists 

of a spherical shell of inner and outer radius  and  respectively, under the gravitational field, which 

initially is completely filled with solid PCM at constant temperature . For time t>0, a uniform 

temperature ( ), which is greater than the melting temperature of the PCM ( ), is imposed at the outer 

surface of the shell. The following assumptions are considered: (1) the PCM is continuous, homogeneous 

and isotropic; (2) the PCM liquid phase is a viscous Newtonian fluid; (3) the flow is laminar, has no 

viscous dissipation and can be modeled as axisymmetric; (4) the whole system is initially sub-cooled at 

790.7  ; (5) the melting of  takes place in the interval between 306.3  and 306.8 , where the 

density in this interval varies linearly from 2130 kg/m3 at 306.3  to 1908 kg/m3 at 306.8 , (6) in this 

study the PCM volumetric expansion due to melting has been neglected for simplicity, even though it is 

well known that the PCM volume changes can exceed 22% in response to the density variations during 

the phase change process. A rigorous model of the problem may consider a spherical capsule that is 

partially filled with solid PCM while the remaining volume is occupied by air, (7) the thermal expansion 

																																																													
1	The content of sections 2.1 to 2.4 was published in: A. R. Archibold, M. M. Rahman, D. Y. Goswami and E. K. Stefanakos, "Analysis of heat 
transfer and fluid flow during melting inside a spherical container for thermal energy storage," Applied Thermal Engineering, vol. 64, pp. 396-
407, 2014. Permission is included in Appendix B. 
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of the shell material induced by the temperature differences has been neglected. According to [87], under 

the analyzed operating conditions the shell material experiences a volume change of 1.87%. The PCM 

thermo-physical properties [88, 89, 90, 91] used to estimate the dimensionless groups were calculated 

based on the reference temperature ( ) and are presented in the appendix. The wall thickness used in all 

the study cases was 0.5mm. Even though this chapter is mainly directed to evaluate the melting dynamics 

of Sodium Nitrate, another PCM (Rubitherm GmbH, RT27) has been included in the analysis for 

comparison purposes. The thermo-physical properties of the RT27 have been taken from [29]. Given the 

above assumptions, the conservation equations for mass, linear momentum and energy within the domain 

have been used to formulate this problem. The governing equations then become: 

Continuity equation: 

1 1
0                 (1) 

Momentum equations in the radial and polar directions: 

 

2 2 2
	          (2) 

 

			
1 2

   (3) 

where,  is the Laplace operator and is defined as:  

1 1
                  (4) 

Energy equation: 

1 1
α  

1 1 1
               (5) 
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where h is the sensible enthalpy and λ the latent heat.  

                         (6) 

Here h  and T  are the reference sensible heat and temperature, respectively. The enthalpy-

porosity technique, originally introduced by Voller and Prakash [92] and Brent et al. [93] was used to 

track the liquid-solid interface. In this method, the motion of the interface is not explicitly tracked. Instead 

it is determined via a linear relationship between the latent heat and the temperature, i.e., 	 where 

( ) is the liquid volume fraction of the computational cell where phase change is occurring (0 ) 

and (L) is the latent heat of fusion. Liquid fraction is defined based on the following relations: 

0; 								

; 							 	

1; 								

                      (7) 

The aforementioned methodology introduces a damping term in each of the momentum equations 

in order to inhibit the velocity value arising from those equations on the solid phase. A Darcy damping 

term is used and is defined as:  

1
                          (8) 

where  stands for the direction of the velocity components. In this study,  or  depending on the case. 

 is a small computational constant used to avoid division by zero 0.001. And  is a constant 

reflecting the morphology of the melt interface. In the present study a value of 10 	 / 	  has 

been used. 

2.2. Computational Procedure Completely Filled Model 

The control volume technique was used to solve the governing equations in the system. An 

implicit scheme based on the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm 

proposed by Patankar [94], was employed to treat the coupling between pressure and momentum. A 

second order upwind scheme was employed to discretize the momentum equations while the PRESTO  
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Figure 2 Time step influence on the center point 
dimensionless temperature for case 12 

 
 

Figure 3 Grid size influence on the center point 
dimensionless temperature for case 12 

 

(Pressure Staggering Option) scheme was adopted for pressure correction via the continuity equation. The 

under relaxation factors for pressure, momentum and energy were 0.3, 0.7, and 1.0, respectively. The 

solution of the problem has been checked for convergence at each time step.  

Scaled absolute residuals of 10-4, 10-3 and 10-6 were set as the convergence criteria for continuity, 

velocity components and energy, respectively. The number of iterations needed to achieve convergence 

varied between 10 and 20 for each time step. In order to provide a better resolution of the temperature and 

velocity gradient in the domain, and to capture the direct contact melting at the bottom of the container 

without any fictitious circulation flow in that region, a structured grid consisting of 9950 quadrilateral 

cells was used. Attention was paid to the grid parameters like maximum cell aspect ratio, cell orthogonal 

quality and cell skewness. The grid size and time step independence of the solution based on the melt 

fraction rate and the dimensionless temperature history at the center point were evaluated by using 

different grid densities and time steps. Figure 2 shows the dimensionless temperature history at the center 

point for a grid distribution with 9950 elements at different time step values. It can be observed that the 

predicted results are independent of the time step variations within the illustrated range. Based on that 

observation, the time step for all the calculations was set to 0.005sec.   
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Figure 4 Experimental results of Tan [30] and numerical predictions of this study 

 

The grid independence of the solution has been checked, and Figure 3 also presents the 

dimensionless temperature history at the center point for different grid sizes using the same time step 

value (0.005 sec). A slightly faster behavior is observed in the case with 5000 elements as compared to 

the case with 9950 and 13000 cells. Consequently, the grid size used to solve all the cases was 9950 cells. 

Experimental results reported by Tan [30] have been used to validate the developed numerical model. In 

the experiments, the melting process of n-octadecane inside a spherical glass capsule was visualized and 

reported. The spherical container of 50.83mm inner radius and 1.5mm wall thickness was initially 

maintained 1°C below the PCM melting temperature (28°C) and, for time t>0 the outer surface of the 

sphere was kept at 40°C. The solid fraction evolution for both experimental and numerical results 

obtained from our simulations for the same problem is shown in Figure 4. The numerically predicted melt 

fraction rate shows reasonably good agreement when compared to the results obtained in the experiments. 

Also, a quantitative comparison between the numerical prediction and the experimental measurements of 
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Figure 5 Melt fraction rate comparison 

 
 

Figure 6 Capsule center point temperature history 
 

the melt fraction rate is presented in Figure 5. Reasonably good agreement is achieved especially after 15 

minutes of process time. Even though the melting of an encapsulated PCM at relatively high temperature 

has been explored in the present chapter, it should be mentioned that the values of the controlling 

parameters have been selected to be in the range of the low temperature melting case used for validation 

purposes, except for the Prandtl number ( ) which in the present analysis is approximately equal to 9.0 

and in the validation case is close to 60.  

The influence of the Prandtl number on melting, in the absence of thermal radiation, was reported 

by Wang et al. [38] and Sparrow et al. [95] for a PCM confined in square and cylindrical containers. No 

significant difference in the melting dynamics was found. The increase of the Prandtl number accelerates 

the melting process but the physical events that describe the melting process of the PCM remain 

unchanged. Therefore, the validity of the comparison between the experimental data at low operating 

temperatures and the predicted numerical solution at relatively high operating temperatures seems to be 

appropriate. A separate validation case has been performed using NaNO3 as a storage material and Figure 

6 shows the comparison between the experimentally measured and the predicted temperature history at 

the center of the capsule. The details of the experimental procedure were described in [96] and reasonably 

good agreement is observed. 
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2.3. Results and Discussion Completely Filled Model 

Thirteen configurations were analyzed in this section. All of them are summarized in Table 1. 

The effect of the outer wall temperature on the melting process for a constant capsule size is considered in 

cases 1 to 3. In cases 2, 4 and 5, the effect of the Stefan number is studied by keeping the Grashof number 

approximately unchanged. The effect of Grashof number on the melting process for a constant Stefan 

number, i.e. equal shell outer surface temperature (Tw= 316.8°C), is analyzed in cases 2 and 6 to 8. The 

effect of Prandtl number is analyzed by comparing the cases 6 and 9 for constant Stefan and Grashof 

numbers. Cases 7, 10 and 11 have been included in order to evaluate the influence of the shell material 

parameter	  ( 1 ⁄ ). The values of  were selected for this study to lie between the 

limiting cases corresponding to the low and high thermal conductivity values. The selected materials are 

Nickel alloy, Silicon Dioxide and Zinc for cases 7, 10 and 11 respectively. The thermo-physical 

properties of the aforementioned materials have been taken from Incropera et al. In order to assess the 

effect of the initial temperature of the system on melting, cases 11 to 13 have been considered. A sub-

cooling parameter	  has been defined as 1 ⁄ .  

Table 1 Analyzed study cases 

Case number 	       

1 
0.010 

5 1.32 10 8.98 0.048
0.966 0.002592 10 2.69 10 8.90 0.097

3 15 4.13 10 8.81 0.145

4 0.0092 12.6 2.68 10 8.84 0.122 0.966 0.00259
5 0.011 7.5 2.66 10 8.93 0.072

6 0.015  9.09 10
8.90 0.097 0.966 0.002597 0.020 10 2.15 10

8 0.025  4.21 10

9 0.034 9.6 9.09 10 35 0.097 0.966 0.00259

10 0.02 10 2.15 10 8.90 0.097 0.6709 0.00259
11 0.9945 

12 0.02 10 2.15 10 8.90 0.097 0.6709 0.0172 

13 0.0259 
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Table 2 Dimensionless groups 
 

Group Definition 

Stefan 
number  

Grashof 
number  

Prandtl 
number 

 

 
 
 
 

 
 

Figure 7 Effect of Tw on the melt fraction rate 
 

The dimensionless parameters that are used to characterize the energy transport and fluid flow 

have been introduced in Table 2. It is appropriate to describe each parameter briefly before to start the 

discussion of the results. The Stefan number (Ste), defined as the ratio of the sensible heat and the latent 

heat of fusion. The Grashof number measures the ratio between the buoyancy and viscous forces. The 

Prandtl number, which describes the relationship between momentum diffusivity and thermal diffusivity. 

It is important to mention that the Grashof number values are based on the shell inner radius, on the 

temperature difference between the wall and melting temperatures and fluid properties evaluated at the 

reference temperature ( 2⁄ ).  

The effect of the shell outer surface temperature was examined by analyzing cases 1 to 3. A 10 

mm inner radii pellet was subjected to three different boundary condition values above the PCM melting 

temperature. The predicted liquid mass fraction for the aforementioned cases is depicted in Figure 7. 

Faster melting was achieved with higher values of the shell outer wall temperature. For a fixed capsule 

size, the melting time decreases 33.76% and 48.60% as the temperature difference  increases 

from 5  to 10  and 15  respectively. However it should be noted that for the same PCM and capsule 

size both the Grashof and the Stefan numbers will vary with the temperature difference (Tw-Tm).
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Figure 8 Effect of the outer wall temperature on the heat transfer rate 
 

therefore, the previously discussed behavior can be associated with two different effects, the 

augmentation of the natural convection heat transfer and an increase in the sensible heat term of the 

Stefan number. Further in the discussion the effect of the Grashof number will be isolated, and a clear 

comparison will be presented. 

In the discussion that follows, the influence of the outer wall temperature on the heat transfer rate 

at the inner surface of the shell is analyzed. However, before that, a description of the trend that each 

curve in Figure 8 follows is presented, in order to provide a better understanding of the physical meaning 

of the considered problem. Initially, the heat is transported mainly by conduction through the shell wall 

due to the temperature difference between the outer and inner wall temperatures. During this period, the 

inner wall temperature increases because of the energy transport and consequently the heat transfer flow 

through the wall decreases with time. This trend is clearly observed at the early stages of all the curves in 

Figure 8. Once the thermal condition at the vicinity of the inner surface reaches the PCM melting point, 

inward melting begins with the creation of the first layer of the molten PCM in that region. At this point, 

the density gradients within the melt layer induce the buoyancy-driven fluid motions that enable the 

natural convection heat transfer. During this time scale, the contribution from conduction to the net wall 

energy flux is very	weak, and the energy exchange process is mainly due to free convection.	
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Figure 9 Effect of the Stefan number on the melt 
fraction 

 
 

Figure 10 Effect of the Stefan number on the heat 
transfer rate 

 

It may be seen that during this period, the total heat transfer increases with time and attains a 

maximum. After this period, all the curves present a slow decay trend with a progressive decrease toward 

the thermal equilibrium state of no energy transport. A similar trend has been reported and described by 

Sparrow et al. [95], Ho and Viskanta [97] and Jones et al. [98]. Attention is now turned to the role that the 

outer wall temperature plays on the previously described curves. During the period, 0 t 2.2	min, the 

average heat transfer rate increases with an increase of the outer wall temperature. However after this 

interval all the curves cross each other, and an inverse trend is observed. The fact that thermal equilibrium 

will be reached sooner for the case with the higher wall and PCM melting temperature difference (higher 

Stefan and Grashof numbers) is a possible explanation for this trend. 

The effect of Stefan number without a contribution of the Grashof number is illustrated in Figure 

9 and Figure 10. Three cases under different wall temperature (7.5, 10 and 12.6°C) have been analyzed. 

The coupling between the Stefan and Grashof numbers is the temperature difference (Tw-Tm). In order to 

keep the Grashof number approximately constant and to attenuate the effect of the pellet size, the inner 

radius of the capsule has been carefully varied within the range between 9.2 to 11mm.  
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Figure 9, shows the predicted melt fraction rate as a function of process time for cases 2, 4 and 5. 

Faster melting is achieved when the Stefan number changes from 0.072 to 0.122. The heat transfer rate at 

the inner wall surface for cases 2, 4 and 5 is shown in Figure 10. During the diffusion-dominated melting, 

all the curves merged together in a single line. After that, because the Grashof number was kept constant, 

it is observed that the free convection heat transfer starts to influence the melting process at almost the 

same time. Later, all the curves show the slow decay trend until thermal equilibrium is attained. As 

discussed before in Figure 8, during this period the heat rate decreases when the Stefan number increases. 

The predicted solid fraction, streamlines and isotherms contours for case 13 are presented in 

composite diagrams illustrated in Figure 11 at different times. The streamline contours are shown on the 

right half of each circle whereas the temperature contours are drawn on the left half, with the vertical axis 

of the sphere separating the two fields. The solid fraction at the given instant is shown in the gray region 

of each plot. At the early stages of melting, the thermal energy is transferred by conduction through the 

shell wall to the PCM. Accordingly the temperature distribution is close to the solution of the Laplace 

equation, i.e. the isotherms have a concentric ring shape, independent of the polar angle (see left hand 

side of Figure 11a). It is well known that, during the early periods of the process, the dominant transport 

phenomenon is heat conduction, and natural convection plays a small role. For times higher than 50 , the 

isotherms begin to deviate from the concentric ring patterns indicating that natural convection starts to 

influence the melting process. 

As the melting process proceeds, the recently formed liquid phase is heated by the inner wall of 

the shell, changing its density and generating a buoyancy-induced flow that drives the heated fluid 

upward. The ascending fluid transfer its heat to the adjacent cooler fluid located in the inward direction. It 

is cooled down and descends adjacent to the liquid-solid interface. Hence, an unsteady, counter-clockwise 

circulating flow is formed in the top portion of the capsule and is characterized by the streamline maps 

shown in the right side of Figure 11b through Figure 11d. A direct result of the circulation flow pattern is 

the faster melting that takes place on the top portion of the solid phase and causes a change in the original 

spherical shape of the solid core to an oblate spheroid. This can be observed in Figure 11e and Figure 11f. 
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a) 20s 

 

 
b) 50s 

 

 
c) 110s 

 

 
d) 180s 

 

 
e) 260s 

 

 
f) 340s 

 

 
g) 420s 

 

 
h) 500s 

 

 
i) 590s 

 

 
j) 700s 

 

 
k) 840s 

 

 
l) 1100s 

 
 

Figure 11 Predicted process evolution for case 13. 

  



www.manaraa.com

24 
	

 
 

Figure 12 Effect of the size of the shell on the melt fraction 
 

As the melting continues the circulating flow grows in physical extent, and the thermal energy is 

now transported from the inner shell wall to the liquid-solid interface primarily by natural convection. It 

may be seen from the left-hand side of Figure 11g and Figure 11i that large temperature gradients are 

developed in the PCM liquid portion located near the inner surface of the shell, while uniform 

temperature is observed across the thickness of the PCM liquid layer. A possible interpretation for these 

observations is that the boundary layer regime has been established in the fluid flow region adjacent to the 

inner shell wall. Similar findings were reported by Sparrow et al. [95].  

As melting continues, the solid phase shrinks in size and the circulating flow grows in physical 

extent and starts to develop the crescent-shaped pattern (Figure 11j and Figure 11k). It should be noticed 

that the circulation speed of the convection cell decreases as the thermal equilibrium is attained. Figure 

11l shows the temperature field (left) and the flow pattern (right) after the melting process is completed. 

Special attention should be paid to the temperature range indicated in the color maps. A well-

defined crescent shaped circulation flow pattern can be observed with the circulation center close to the 

capsule wall. On the temperature side, a stratified temperature field is observed with high-temperature 

gradients near the wall, especially in the lower part of the sphere.   
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Figure 13 Effect of the Grashof number on the melt 
fraction 

 
 

Figure 14 Effect of the size of the shell on the heat 
transfer rate 

 

The results were found in good agreement with the experimental and numerical results on the 

natural convection inside a spherical enclosure reported by Chow and Akins [99] and Hutchins and 

Marschall [100]. The effect of the shell size on the melting rate for a constant Stefan number is presented 

in Figure 12. As expected, the larger the pellet size, the slower the pellet melts, with total melting times of 

5.1, 8.1, 11.4 and 15.2 minutes for cases 2, 6, 7 and 8 respectively.  

In order to isolate the effect of the size of the pellet and investigate the role that natural 

convection heat transfer plays in the melting process of Sodium Nitrate under a constant Stefan number, 

the results from Figure 12 have been plotted as a function of the dimensionless time ( ) that is 

defined as the product of the Stefan and Fourier numbers. It can be observed from Figure 13 that 

increasing the Grashof number from 2.69 10  to 4.21 10  enhances the melt fraction rate. A reversal of 

the trend is observed in this graph as compared with Figure 12 and is due to the fact that the Fourier 

number varies inversely as the square of the radius. Therefore for the same instance of time the Fourier 

number of a smaller radius case is higher than the value obtained for a higher radius case. Figure 14 

shows the predicted average heat transfer rate at the inner surface of the shell for cases 2 and 6 to 8. 
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Figure 15 Effect of the Prandtl number on the melt 
fraction 

 
 

Figure 16 Effect of the shell material on the melt 
fraction 

 

The heat rate was found to increase with the increase of the Grashof number. Also, the heat 

transfer rate is proportional to the heat transfer area; therefore, an increase in the available area for heat 

transfer causes an increase in the heat transfer rate. In order to investigate the role of Prandtl number 

(different phase change materials) under the same Grashof and Stefan numbers, cases 6 and 9 are 

compared. The material for case 9 is RT27. The Grashof and Stefan numbers were kept unchanged by 

manipulating the temperature difference and the pellet size. 

Figure 15 shows the predicted liquid mass fraction as a function of dimensionless time for the 

aforementioned cases. A significant difference in the melt fraction rate is observed. Faster rate of melting 

is achieved when the Prandtl number is higher. At this point, the Rayleigh number ( ), which is 

one of the controlling parameters in the natural convection heat transfer mode, plays a significant role. 

For the same Grashof number, the convective energy transport mode of a PCM with larger Prandtl 

number will be enhanced and consequently its melting process will be faster compared to that in a PCM 

with smaller Prandtl number. The influence of the shell material thermal properties on the melt faction 

rate is presented in Figure 16. 
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Figure 17 Effect of the initial temperature on the 
center point temperature history 

 
 

Figure 18 Melt fraction and Nusselt number as a 
function of controlling parameters 

 

Three different shell materials have been chosen based on their thermal conductivity values in 

order to take into account the heat flow resistance at the shell wall. It can be observed from Figure 16 that 

there is no significant difference in the melt fraction rate between cases 7 and 11 which correspond to 

metallic shells (Nickel alloy and Zinc, respectively). However, a 34.1% increase in the total melting time 

is observed in the case 10, (low thermal conductivity material) as compared to cases 7 and 11. A low 

thermal conductivity wall generates a high heat flow resistance and consequently a high-temperature drop 

within the shell wall. Thermal energy requires more time to be transferred through the shell to start and 

continue the melting process. 

The temperature history of the pellet center point is presented in Figure 17 for different initial 

temperatures of the system (1, 10 and 15  below the PCM melting temperature). Cases 10, 12 and 13 

have been compared, and the difference in the heating dynamics is observed during the solid phase 

sensible heating process (A-B) because of the initial temperature value. However, no significant 

difference has been found during the phase change (B-C) and liquid sensible heating process (C-D). 

In order to appropriately correlate the main results of this study and to develop applicable 

expressions regardless of any change in the system parameters, the dimensionless quantities that 
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characterize the natural convection-dominated melting process in a spherical enclosure have been 

arranged in the form . Figure 18 presents the melt fraction as a function of the 

previously described controlling parameter and it can be observed that all the curves practically merge 

into a single curve for the following exponents 0.33, 0.27, 0.37, 0.72 and 0.02. 

Based on that, the following correlation is proposed: 

1 1
. . . . .

9.5

.

               (9) 

This correlation seems valid in a range encompassing the simulated cases:  

0.048 0.145, 1.32 10 4.21 10 , 8.90 35.0, 0.6709 0.9945, 

0.00259 0.0259. 

A dimensionless quantity that includes the average Nusselt number, at the inner surface of the 

shell, in combination with the controlling parameters of the problem is proposed, as  

 

The above quantity has been plotted, for each study case, as a function of the same dimensionless 

number used in Eqn. [9] and it is shown from Figure 18 that all the curves practically merge into a single 

curve for the following exponents: 0.66, 0.29, 0.4, 0.72 and 0.02. 

2.4. Partially Filled Model2 

Heretofore the discussion has been focused on the melting of  confined in a spherical shell 

whose internal volume was entirely filled with solid PCM initially. However because of the density 

differences between the liquid and solid PCM phases ( ), it is fully expected that during the 

phase change process a volumetric expansion takes place. In the case of melting, the final volume of the 

liquid phase after completion of the process exceeds the volume originally occupied by the solid phase. 

	 	

																																																													
2	The content of this section was published in: A. R. Archibold, J. Gonzalez-Aguilar, M. M. Rahman, D. Yogi Goswami, M. Romero and E. K. 
Stefanakos, "The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells," Applied 
Energy, vol. 116, pp. 243-252, 2014. Permission is included in Appendix B. 
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In order to accommodate the volume excess while melting, air space has been provided inside the 

capsule while the rest of the internal volume is filled with solid PCM. This additional feature in the 

mathematical model will take care about the assumption 6 defined in section 2.1 and extends the 

previously presented model. The inclusion of the air space also represents a more realistic physical 

representation of the encapsulated system towards the current commercially available manufacturing 

techniques for those systems.  

The physical domain of the considered problem is presented in Figure 1b. A spherical nickel 

capsule with an internal radius,  and a wall thickness of 0.5 mm is partially filled with solid  

and the remaining volume is occupied by air at 1 bar. The air space provides room for volumetric 

expansion during the phase change process. The problem has been modeled by solving the equations for 

the conservation of mass, momentum, and energy numerically using a control volume discretization 

approach [94] along with the enthalpy-porosity method [92] to track the melting front. The ideal gas 

equation of state is used to model the air density. The motion of the Air/PCM interface in the multiphase 

system was tracked by the Volume of Fluid (VOF) model. The model defines the volume fraction of the 

 fluid ( ) which is defined as:  

	 	 	 	 	 	
	 	 	

                   (10) 

and it takes the following values:  

0 	 	 	 	 	 	 	
1 	 	 	 	 	 	 	

0 1 	 	 	 	 	 	 	
             (11) 

 

Based on that, the mass conservation equation is: 

∙ 0                      (12) 

where u  is the velocity vector of the i  fluid. The linear momentum conservation equation can be 

expressed as:   
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Figure 19 Grid distribution used in the analysis 
 

∙             (13) 

Finally, the energy conservation equation can be written as: 

∙ ∙ ∙ κ           (14) 

The computational domain was discretized using a structured longitude/latitude spherical grid 

consisting of 10446 quadrilateral cells with marked consideration at the PCM-Air interface and mesh 

parameters like maximum aspect ratio and element orthogonal quality. Figure 19 shows the grid 

distribution used to solve the completely and partially filled models. Commercially available software 

Ansys/Fluent v12 was employed for the calculations. 

The governing equations were solved using the segregated solver. The energy and linear 

momentum equations were discretized using the First Order Upwind scheme. The Pressure Staggering 

Option (PRESTO) was used to discretize the pressure correction equation while the Semi-Implicit 

Method for Pressure-Linked Equations (SIMPLE) was used to discretize the continuity equation 

(Pressure-Velocity Coupling). 

Validation has been performed by comparing the proposed numerical model with the 

experimental results reported by Assis et al. [29]. Figure 20 shows a comparison between the 

experimental data and the numerical results obtained from our simulations for the same problem. 
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Figure 20 Validation case partially filled model 

Table 3 Analyzed study cases in partially filled 
model 

 

	   

1 0.010 5 1.32x104 0.048 

2 0.015 5 4.44x104 0.048 

3 0.02 5 1.05x105 0.048 

4 0.025 5 2.06x105 0.048 

5 0.015 10 9.09x104 0.097 

6 0.015 15 1.39x105 0.145 

7 0.015 20 1.90x105 0.194 

8 0.0165 8 9.09x104 0.077 

 

Reasonably good agreement was found between the numerically predicted melt fraction rate and 

the experimental results. Even though the PCM considered in the present study is different from the 

analyzed in the validation case with Prandtl numbers approximately close to 9.0 and 35 respectively, no 

differences in the melting dynamics between the two PCMs were found. The discussion of the validity of 

the validation exercises was provided in section 2.2. It should be pointed out that the shell material used 

in [29] was glass while in this study Nickel has been used. Apart from the anticipated faster melting rate 

obtained with the increase of the shell thermal conductivity, the melting dynamics of the two PCMs was 

preserved. 

Eight different cases were analyzed in this study as summarized in Table 3. The effect of the 

Grashof number on the melting and heat transfer for a constant Stefan number was evaluated by 

considering the first four study cases, where the shell diameter was varied from 20 to 50 mm. Study cases 

5 to 7 have been included in order to assess the role of the outer surface temperature on the melting 

process. The evolution of the predicted isotherms, streamline contours, and PCM solid and air fraction 

distributions, during the melting of case 2, are presented in the composite diagrams in Figure 21. The 

history of the process is depicted as a function of time.   
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The temperature distribution of the system is presented in the left half of each circle while the 

right half contains the molten PCM streamline contours and the PCM solid phase and the air fractions. As 

discussed previously, initially the heat is transferred by conduction through the capsule wall. After that, 

thermal energy travels faster through the air due to its higher thermal diffusivity as compared to the PCM. 

As a result, a counterclockwise buoyancy-induced recirculating flow is created in the air zone. This 

causes the skewed temperature contours observed in the top-left portion of Figure 21a. As a result of the 

diffusion-controlled heat transfer process within the PCM, melting is initiated in the peripheral portion of 

the PCM and an axisymmetric thin layer of molten PCM is created adjacent to the inner wall of the 

capsule (as seen at right side of Figure 21a). The heat flow at the interface between the air portion and the 

top solid PCM is not at the same rate. Consequently, the upper part of the sodium nitrate remains solid. 

As the molten portion gets larger, the density of the fluid in the vicinity of the inner surface of the 

shell decreases due to the temperature gradient and flows up covering the top region of the solid fraction. 

The occurrence of the buoyancy-induced liquid flow that initiates natural convection within the melt layer 

was previously discussed in the section 2.3 and will be just mentioned without further elaboration. The 

streamline contours of the above-mentioned natural convection flow are observed at the right PCM side 

of all the plots in Figure 21. This recirculating flow enhances the heating rate towards the solid, 

increasing the melting in this zone, and the solid adopts an oblate spheroid-shape on its top (as seen in 

Figure 21b and Figure 21c).  

As the melting process proceeds, the solid portion shrinks in size and the recirculating flow grows 

in physical extent (see Figure 21d to Figure 21f). Also, the sodium nitrate progressively fills up the pellet 

due to the volumetric expansion of the liquid phase, as shown in the right-hand side of Figure 21g and 

Figure 21h. Consequently, the air is compressed, increasing the pressure inside the pellet. In order to 

easily track the motion of the Air/PCM interface as a result of the thermal expansion, a horizontal line is 

included on the right side of all the presented plots of Figure 21, indicating the initial position of the 

interface and its displacement. For instance, the salt quantity inside the pellet should be carefully 

calculated in order to guarantee that the internal pressure does not exceed the shell mechanical strength.
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a) 16s 

 
 

b) 100s 

 
 

c) 184s 

 
 

d) 268s 

 
 

e) 352s 

 
 

f) 520s 

 
 

g) 604s 

 
 

h) 720s 
 

Figure 21 Predicted evolution of the melting process for study case 2  
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Figure 22 Internal pressure history for case 2 
 

The pressure evolution inside the capsule is presented in Figure 22 for the study case 2. A linear 

profile is observed with a maximum pressure of 220 kPa. These observations suggest that the shell 

material and thickness need to meet the mechanical and thermal stresses induced by the pressure and 

temperature differences between the inner and outer wall surfaces. 

Melt fractions for all the analyzed study cases are plotted as a function of combinations of 

Fourier, Stefan and Grashof numbers in Figure 23 in order to develop a generalized correlation. By 

manipulating the exponents of the Stefan and Grashof numbers, it was determined that all the melt 

fraction curves converge to a single location when the exponent of the Stefan number is 0.37, and the 

exponent of the Grashof number is 0.25. An equation for the generalized melt fraction (MF) curve can be 

written as: 

1 1
. .

2.8

.

                   (15) 

A dimensionless group ( . / . ) has been defined in order to correlate the heat 

transfer interactions during the analyzed phase change process. Figure 23 shows the corresponding 

variation with the Fourier, Stefan and Grashof numbers for all the study cases. 
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Figure 23 Melt fraction and Nusselt number correlations partially filled model 
 

It may be observed that for the proposed exponents of the Stefan and Grashof numbers all the 

curves practically merge to a single line. The following piecewise correlation for the Nusselt number 

dimensionless group is proposed: 

.

.

0.29 4.75 . sin 0.068 0.55 , 0.04 0.4

0.47 0.4 . , 0.4 3.0
      (16) 

where: . . . The above correlations cover the range encompassing the cases simulated: 

0.048	 	 	 	0.194, 1.32	 	10 	 	 	 	2.06	 	10 , 8.73	 	 	 	9.05. 
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CHAPTER 33: SOLIDIFICATION OF SODIUM NITRATE IN A SPHERICAL SHELL 

The previous chapter presented results directly relevant to the natural convection induced melting 

process in the absence of thermal radiation. It was reported that natural convection exerts a strong 

influence on the melting of . However, thermal radiation may also contribute significantly to the 

net energy exchange process during phase change which would result in faster melting/freezing. 

Experimental measurements of the  optical absorption properties, reported by [101], have 

shown the potential of this salt to absorb thermal radiation in the near infrared portion of the spectrum. 

The purpose of this chapter is to extend the previous mathematical model to include thermal radiation 

within the PCM and quantify its contribution to the overall energy transport. The influence of 

simultaneous conduction, convection and thermal radiation on the freezing dynamics of a non-opaque 

media, encapsulated in a closed spherical shell at relatively high temperatures, is examined. To 

accomplish that, a two-dimensional, axisymmetric, transient model has been solved numerically. 

3.1. Heat Transfer Analysis 

The considered system is schematically shown in a cross-sectional view in Figure 24. It consists 

of an opaque, gray and a diffuse spherical shell of inner radius  and wall thickness . Initially the shell 

inner volume is completely filled with liquid PCM at temperature , which is higher than the storage 

material melting temperature . At time 0, the outer boundary surface, whose emissivity was set to 

unity, is subjected to a convective boundary condition characterized by a heat transfer coefficient  and 

a free stream temperature , which is lower than . The PCM is treated as a semitransparent, non-gray, 

medium being emitting and absorbing. Uniform and equal index of refraction of each phase has been 

assumed. The scattering of thermal radiation has been neglected in this study.   

																																																													
3	The content of this chapter has been submitted to the Int. Journal of Heat and Mass Transfer. A. R. Archibold, D. Y. Goswami, M. M. Rahman 
and E. K. Stefanakos, "Multi-mode heat transfer analysis during freezing of an encapsulated storage medium," International Journal of Heat and 
Mass Transfer, 2014, In review. Permission is included in Appendix B. 
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Figure 24 Schematic representation of the physical domain 
 

Multiple physical assumptions have been considered in the mathematical model and attention will 

now be turned to discuss their applicability. Experimental observations on the freezing of a low-

temperature PCM [77] and the natural convection heat transfer to a fluid contained in spherical containers 

[99] suggest that both the phase change process and the buoyancy induced fluid motion can be modeled 

as axisymmetric. It was also reported by [99] that for Rayleigh numbers below 10 , laminar flow was 

found to exist. In the present study the range of the examined Rayleigh numbers was 7.92 10

2.0 10 . Therefore, the process has been modeled as axisymmetric and laminar flow has been assumed 

for the fluid motion within the liquid phase.  

In order to account for natural convection, temperature dependent density within the liquid phase 

has been defined only in the body force terms of the momentum equations based on the Boussinesq 

approximation. The PCM is assumed to be a continuous, homogeneous and isotropic substance. The wall 

thickness used in all the study cases was 1	mm. The previously described problem was defined by the 

equations of continuity (Eqn.1), momentum (Eqns. 2 and 3) and energy. For a two-dimensional, viscous 

Newtonian flow with no viscous with no viscous dissipation in a polar and radial coordinate system, the 

energy equation may be written as: 

1 1
 

α
1 1 1

∙           (17) 
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The last term on the right-hand side of Eqn. 17 accounts for the thermal radiation contribution, 

and it is coupled with the radiation intensity via the equation of radiative transfer (RTE). For diffuse 

radiation and isotropic scattering in a spherically symmetric medium the RTE [102] can be written as: 

, 1 1 ,
,            (18) 

where , 	 is the radiation intensity, which is a function of position and direction, μ is the cosine of the 

angle between the direction Ω of the beam and the extension of the radius vector r,  is the intensity 

of black body radiation at the temperature of the medium. In the discrete ordinate method, the RTE is 

approximated by discretizing the entire incident solid angle using a finite number of ordinate directions 

[103, 104, 105, 106]. Therefore, equation (18) is written for each ordinate and reduces to a discrete 

system of differential equations (Eqn. 19), sufficient to solve for radiation intensity ( ) at every location 

within the medium. 

1 1
                (19) 

where the subscript i denotes the ordinate directions. Once the radiation intensity is known, the local 

radiative heat flux (q ) can be determined based on the following expression: 

2 , 2                   (20) 

3.2. Grid Independence and Validation of the Numerical Solution 

Two different properties have been selected to evaluate the effect of mesh grid size on the 

solution of the model. The mass average solid fraction and the dimensionless temperature (Θ ) of a node 

located at the horizontal axis of the domain have been plotted as functions of the dimensionless time (as 

seen in Figure 25) for different grid densities with 15 , 20 , and 20.5 . 

It may be seen from Figure 25 that for the given conditions, additional refining of the grid from 1400 to 

10400 elements has no influence on the freezing rate. No significant difference is observed in the 

solidification dynamics with the freezing time approximately 28 minutes. 
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Figure 25 Influence of the grid size on the 
solidification rate and node temperature 

 
 

Figure 26 Evolution of the solid/liquid interface 
during single phase Stefan problem 

 

The same trend is observed in the dimensionless temperature response during the liquid phase 

sensible cooling and phase transition process 0 13.1 . However, some minor differences are 

observed at the beginning of the solid phase sensible cooling process with slightly faster temperature 

response with the increase of the element size. A grid distribution with 5580 elements and minimum and 

maximum element sizes as 0.29 0.15  and 0.15 0.55  (width x height) respectively, was found 

sufficient to achieve independence of the solution. The time step ( ) used in the calculations in this 

chapter is the same utilized in the computations in chapter 2 (0.005sec).  

The proposed numerical model has been validated against the semi-analytical solution of the 

single phase Stefan problem, in the absence of thermal radiation, reported by Hill and Kucera [70]. A 

comparison is provided in Figure 26 which illustrates the variation of the dimensionless solid/liquid 

interface with respect to the dimensionless time for parametric values of the Stefan and Biot numbers 

equal to 0.5 and 1 respectively. Reasonably good agreement is observed between the numerical and the 

analytical results. However, as it was mentioned in chapter 1, the proposed model also incorporates the 

participating thermal radiation within the PCM during the phase change process, which is missing in the 

simplified Stefan problem where the heat of fusion is assumed to be removed by conduction only.  
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Figure 27 Solid fraction distribution along the slab 
 

 

Therefore, a second validation test has been performed in order to verify the thermal response of 

the one-dimensional transient solidification problem of a semitransparent planar medium in the presence 

of simultaneous conduction and thermal radiation. Figure 27 shows the solid fraction distribution along 

the characteristic length of the slab for different dimensionless times ( ). The figure also includes a 

comparison between the results reported by Parida et al. [107] and the predictions obtained from our 

simulation of the same problem. The general trends for both simulations are the formation of a mushy 

zone that extends into the slab early in the process and the propagation of the solid phase into the slab as 

the freezing proceeds. Reasonably good agreement is observed. 

3.3. Results and Discussion 

The parameters analyzed in the course of this investigation are the melt degree of superheat 

( ), the external heat transfer coefficient that characterizes the outer shell wall boundary condition, 

the size of the shell and thermal radiation heat transfer within the PCM. These parameters have been 

selected based on a practical point of view of the possible use of  for storage of thermal energy in 

concentrating solar power plants. Eight different study cases have been defined to identify the 

aforementioned parameters and are presented in Table 4.   
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Under the present conditions, the liquid phase degree of superheat will activate the natural 

convection energy transport and consequently affect the freezing dynamic of the PCM, at least during the 

early periods of the process, as reported by Sparrow and Broadbent [73] for the solidification in vertical 

cylinders. Four superheating conditions were considered, 1, 5, 10 and 20°C above the PCM melting 

temperature respectively. Study cases 1-3 and 5 represent this effect. As it was mentioned before, a 

uniform convective thermal boundary condition was imposed at the outer wall of the capsule in order to 

represent the discharging process in a packed bed system. 

The Biot number ( / ) has been used to characterize this effect where three different 

heat transfer coefficients ( ) have been evaluated and their, influence on the thermal behavior of the 

system was analyzed. Study cases 4-6 describe this effect. Three different shell sizes have been analyzed 

in this study with inner radius of 15, 25 and 35mm respectively. These conditions are represented by 

study cases 6-8. In order to account for the participating thermal radiation, the PCM has been modeled as 

a semitransparent, non-gray medium in all the study cases presented in Table 4. A seven-band model, 

based on the experimental results reported by Ramdas [101] has been used to account for the spectral 

dependence of the PCM optical properties. 

 

Table 4 Geometrical and thermal parameters 

	 	    

1 0.015 1 8.77x103 5 0.0096 

2 0.015 5 4.46x104 5 0.048 

3	 0.015	 10 9.09x104 5 0.096 

4	 0.015	 20 1.90x105 1 0.195 

5	 0.015	 20 1.90x105 5 0.195 

6	 0.015	 20 1.90x105 10 0.195 

7	 0.025	 20 8.81x105 16.67 0.195 

8 0.035 20 2.42x106 23.34 0.195 

  



www.manaraa.com

42 
	

A limiting case, in which the PCM has been treated as a non-attenuating and non-emitting 

medium with the shell inner surface emissivity equal to zero, has been also included in the analysis, as a 

reference case in which thermal radiation does not play any role. The shell size and thermal conditions of 

the limiting case have been selected to be exactly the same as that used in the study case 5. Further, in this 

section a discussion about the relevant radiative properties is also included. 

The evolution of the solidification process at various time instants is presented in Figure 28. Each 

plot is composed of two separate halves divided by the symmetry line of the domain that is used as the 

ordinate in the defined radial and axial (Z) coordinate system. Isotherms are presented in the left half 

while the streamline contours and solid fraction are shown in the right half. 

As the cooling process begins, a buoyancy-induced force drives the molten PCM located at the 

central core of the capsule upward. The ascending fluid transfers its heat to the adjacent cooler fluid near 

the inside wall. It is cooled down and descends nearby the inner shell wall. Hence an unsteady, clockwise 

circulating flow is formed in the melt layer which is characterized by the closed streamline maps observed 

on the right side of Figure 28a and 28b. This recirculation pattern delivers relatively hot liquid to the 

upper region of the capsule, where its presence retards the cooling process. During this short time scale 

(relative to the period to complete the PCM freezing), the hot fluid continuously arrives in this region, 

impinges on the inner wall and displaces the cooler fluid down. 

Inspection of the temperature contours of Figures 28a and 28b reveals a stratified temperature 

field with the highest temperature in the upper zone. During its travel along the inner wall, the displaced 

fluid is being cooled by the outer wall and descends toward the lower portion of the capsule where the 

temperature drops below the melting point and therefore inward solidification begins. 

A closer view of the right-hand side of Figures 28a and 28b illustrates the formation of the first 

PCM solid layer at the bottom of the shell. During this time scale, the buoyancy induced flow pattern in 

the melt layer is characterized by a thin layer of liquid PCM flowing downward and a large core of fluid 

moving upward. The thickness of the down-flow fell in the range of 12 to 18.7% of the inner radius of the 

shell at early times. 	 	
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a) 60s 

 

 
b) 120s 

 

 
c) 240s 

 

 
d) 600s 

 

 
e) 900s 

 

 
f) 1200s 

 

 
g) 1500s 

 

 
h) 1680s 

 

Figure 28 Predicted evolution of the solidification process for case5  
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Figure 29 Temperature distribution along the shell horizontal radius 
 

These findings are in agreement with the experimental observations of the natural convection 

flow inside spherical enclosures reported by Chow and Akins [99]. 

In order to complete the analysis of the physical events that characterize the early periods of 

freezing (0 150 ) where free convection is believed to be the dominant heat transfer mode, the 

temperature profile at the horizontal radius is presented in Figure 29 for different times. Sharp 

temperature gradients are developed in the fluid adjacent to the inner wall while uniform temperature is 

observed across the thickness of the liquid layer. This trend is associated with the formation of the 

thermal boundary layer near the inner shell wall. Similar results were reported by Sparrow et al. [95] for 

the melting problem in vertical cylinders.  

Inspection of the left-hand side of Figure 28c shows that the temperature gradient within the melt 

layer that was responsible for the natural convection motion is no longer in evidence, therefore, a 

reduction of the streamline contour intensity is also observed as compared with the previous time instant. 

Another important observation of Figure 28c is that the temperature within the melt layer is 

slightly above the phase change temperature, meaning that during the first 240s of the process the 

temperature has dropped approximately 20°C. With the absence of the hot flow at the top of the shell, the 

inward solidification proceeds and solid PCM is observed in the vicinity of all the inner shell. 
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Figures 28d to 28h illustrate the freezing dynamics of the PCM with almost concentric ring shape 

for the isotherms as well as the solid/liquid interface. The absence of the temperature gradients within the 

melt layer is the reason why the streamlines maps are not included in Figures 28d to 28h. 

To place these findings in perspective, the events that occur during the presented freezing process 

can be divided into two different time scales. A short time scale 0 150  in which natural 

convection plays a first order role, but is rapidly terminated because of the sharp decrease of the liquid 

core temperature. On the other hand, a second and larger time scale (relative to the period to complete the 

PCM freezing) that shows solid-phase isotherms close to the solution of the Laplace equation, where it is 

assumed that the leading energy transport mechanisms are conduction and radiation. In that context, the 

simultaneous interaction between the conductive and the radiative transfer provides a more effective 

mechanism to transport the liberated latent heat of fusion from the solid/liquid interface to the outer shell 

wall. 

It has been previously reported by [51] that the presence of thermal radiation significantly 

improves the heating or cooling rates as compared with the pure conduction systems. Based on that, a 

spectral absorption coefficient has been defined for both solid and liquid PCM phases in order to account 

for the participating thermal radiation that may occur during the freezing process. 

Figure 30 shows the experimental measurements of the near infrared transmittance of 	, 

reported by Ramdas [101] and the approximate seven band model that was used during the calculation 

process. For each band, a uniform absorption coefficient has been estimated while the contribution of 

scattering to the extinction of thermal radiation has been neglected. Even though in this chapter, emphasis 

has been placed on Sodium Nitrate as a PCM, no further difficulties are anticipated to analyze other 

PCMs in the presented model. In chapter 4, the influence of thermal radiation on melting and 

solidification of a PCM confined in spherical shell will be analyzed and discussed, at higher operating 

temperatures (+800 ). 

Recent experimental contributions on the radiative properties of high-temperature eutectic 

systems reported by [108] can be utilized to extend and compare the results reported in this investigation.
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Figure 30 Spectral transmittance of Sodium Nitrate 
 

 

The predicted variation of the solid fraction with time for the limiting case and the study case 5 is 

presented in Figure 31. It may be seen that faster solidification is achieved when thermal radiation is 

considered. The solidification time decreases 17% when thermal radiation is included in the model. A 

closer look of the solid fraction curves reveals that during the early times, the solid fraction is equal to 

zero, indicating the existence of the pure natural convection motions within the liquid PCM. As the 

freezing initiates, a small difference is observed between the curves with study case 5 predicting a slightly 

faster solidification. As the solid layer increases its size, the contribution of thermal radiation becomes 

more significant in the presence of conduction, resulting in a more pronounced difference.  

The predicted energy transfer interactions at the inner shell wall are also included in Figure 31 

and are displayed in broken lines. In order to appropriately correlate the heat transfer data, two different 

dimensionless parameters have been defined, the Nusselt number (Nu) which is estimated based on the 

conductive and the convective heat fluxes (  and ) and the dimensionless radiative flux (Ψ) which 

has been calculated based on the radiation heat flux ( ). It should be noticed that the limiting case is only 

characterized by the Nusselt number because of the absence of thermal radiation while the case 5 

accounts for all the energy transport modes.    
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Figure 31 Influence of radiative energy transfer on the thermal dynamics of the process 

 

Both curves are multiplied by the Stefan number in order to accommodate them in the solid 

fraction plot. It is believed that during the early times, the heat is transported mainly by conduction 

through the shell wall, because of the absence of natural convection. This short time scale characterizes 

the period to reach the required melt layer temperature difference that activates the unstable thermal 

condition where density gradients promote buoyancy-driven fluid motion. It should be pointed out that 

initially the liquid PCM is in a stagnant condition. Consequently, during this period, the total heat transfer 

sharply decreases with time. 

Once the thermally unstable condition that develops the natural convection flow is properly 

achieved, the contribution from conduction to the total energy flux at the wall, is very weak, and the 

energy exchange process is mainly due to natural convection. It may be seen that during this time scale 

the total heat transfer increases with time. The change in slope in both of the curves is found to be 

coincident with the starting of the freezing process as may be seen from the solid fraction curves. The 

rapid decrease of the liquid core temperature to a value just above the PCM melting point terminates the 

above-mentioned time scale and brings the inward freezing with it.  
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Figure 32 Velocity distribution along the horizontal radius of the shell for study case 5 

 

The growing solid-phase resistance tends to impede the heat flow from the PCM to the outer wall 

and could be the responsible for the decrease of the total heat transfer at large times. As expected the 

contribution of thermal radiation enhances the energy interaction at the inner shell wall. 

In order to provide a quantitative notion of the velocity magnitudes and the flow patterns 

developed in the melt layer during the early periods of the process, the velocity component in the vertical 

direction, along the horizontal radius of the capsule at different times is presented in Figure 32. The 

secondary figure has been included to show the locations where the velocity has been measured. 

The flow structure is described as follows. A thin layer of fluid flows downward in the vicinity of 

the inner shell wall, where the maximum velocity is attained, and upward flow characterizes the fluid in 

the center of the capsule. As the driving temperature difference within the melt layer decreases with time 

(as seen in Figure 29) the natural convection flow loses its strength and consequently the velocities also 

decrease. A closer view of Figure 32 reveals that the thickness of both flows increases as the process 

proceeds. At 180s, the velocity magnitude was found to be significantly smaller as compared to the values 

at 60s. The effects of the initial superheating temperature on the solid fraction and the dimensionless 

energy transfer at the inner shell wall are presented in Figure 33. It may be seen from the bottom of the 

solid fraction curves that the larger the degree of superheating the longer to start the freezing. 
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Figure 33 Influence of the liquid superheating on 
the thermal dynamics of the process 

 
 

Figure 34 Influence of the Biot number on the solid 
fraction rate 

 

Even though, the liquid superheat clearly affects the freezing dynamics early in the process. Once 

the energy transfer from the liquid phase to the solid/liquid interface has ceased, the remaining energy 

transport mechanisms are radiation and conduction within the solid phase which essentially remain 

unchanged under the analyzed thermal conditions of cases 1-3 and 5. This fact could be responsible for 

the small differences observed in all of the curves at the late stages of the process. 

The influence of the external heat transfer coefficient on the solid fraction rate is depicted in 

Figure 34. The heat transfer coefficient values of 45.4, 226.7 and 453.5 /  have been evaluated 

which correspond to Biot numbers equal to 1, 5 and 10 respectively. As expected a reduction in the 

solidification time was found with the increase of the Biot number. However, the time reduction was 

more pronounced in the case where Bi=1 as compared with the study cases where the Biot number was 5 

and 10. 

The effect of shell size on the solidification rate is presented in Figure 35. Three shell sizes have 

been analyzed with inner radius varying from 15 to 35mm. It may be observed that the smaller the 

capsule, the faster the solidification. 
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Figure 35 Influence of the shell size on the solid 
fraction rate 

 
 

Figure 36 Solid fraction as a function of the 
controlling parameters 

 

As shown in Figure 36, the predicted solid fraction for all the study cases, except for the study 

case 4, has been plotted as a function of a dimensionless group ( ) that takes into 

consideration the controlling parameters analyzed in this chapter. Equation (12) is proposed to correlate 

the solid fraction (SF) of the analyzed cases: 

1.017 	0.1
.

                  (21) 

It was found that, for a=-0.18, b=0.13, c=0.31, all the data merged together in a single line. A 

small deviation from the proposed correlation is observed in the early stages of the process in study cases 

5, 6 and 7 and it is related to the wide range considered for the Biot number, which controls the cooling 

rate at the beginning of the freezing. The proposed correlation seems valid in the following range of the 

controlling parameters: 0.0096 0.195, 8.77 10 2.42 10 , 5 23.34, 

≅ 9.0. 
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CHAPTER 44: MELTING AND FREEZING AT ELEVATED TEMPERATURES 

The present chapter analyzes the interaction between the natural convection-driven melting and 

the radiation energy transport within the PCM solid and liquid phases at elevated temperatures (

800 ). It is presumed that under those operating conditions, radiative heat transfer becomes significant 

as compared to the other fundamental heat transfer modes. Consequently, the low thermal conductivity 

problem in the heat transfer during phase change can be overcome. 

NaCl was selected as the PCM in this investigation because of its high latent heat of fusion and 

relatively low cost. Also, it’s melting temperature (800 802 ) matches with the typical operating 

range of central receiver power plants. It has been reported by [109] that NaCl, is mostly transparent to 

thermal radiation in the wavelength range of interest (1.5 9.0 ). Two approaches are used in this 

investigation to enhance the thermal radiation heat transfer in NaCl. In the first approach, the inner wall 

of the capsule has been lined with a high infra-red emissivity coating while in the second, highly 

absorptive nano particles were introduced into the PCM as dopants in order to increase the absorption of 

radiant energy. In the numerical model presented in this section, it is assumed that the additive particles 

dissolve into the PCM to form a homogeneous and isotropic substance. Based on that, the effect of the 

additive concentration on the system can be represented by changing the PCM absorption coefficient with 

the assumption that the higher the concentration, the larger the absorption value. Therefore, uniform and 

equal absorption and scattering coefficients have been defined for the solid and liquid phases of the PCM.  

4.1. Formulation of the Melting Problem 

The considered system is schematically shown in a cross-sectional view in Figure 24. It consists 

of an axisymmetric, two-dimensional representation of an opaque, gray and diffuse spherical shell of  

																																																													
4	The content of this chapter has been submitted to the Applied Energy journal.	A. R. Archibold, M. M. Rahman, D. Y. Goswami and E. K. 
Stefanakos, "The effects of radiative heat transfer during the melting process of a high temperature phase change material confined in a spherical 
shell," Applied Energy, 2014. In review. Permission is included in Appendix B.	
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inner radius  and thickness . The inner volume of the shell is completely filled with NaCl which can 

conduct heat as well as absorb, emit and scatter radiant energy. Initially, the PCM is solid at a temperature 

 and at a time t>0, the outer boundary surface is subjected to a uniform temperature  which is higher 

than the storage material melting temperature . The contribution of the radiant energy transfer within 

the PCM is characterized by the absorption and the scattering coefficients  and  respectively, which 

are independent of temperature and the frequency in this study. A uniform and wavelength independent 

index of refraction ( 1.4) for each PCM phase has been assumed in all the calculations based on the 

experimental measurements of Bloom and Peryer [110]. 

As described in section 3.1, the inclusion of participating thermal radiation in the mathematical 

model requires an additional term in the energy equation (as seen in Eqn. (17)). The extra term accounts 

for the radiative heat flux and is coupled with the radiation intensity through the equation of radiative 

transfer. The equation of radiative transfer for diffuse radiation and isotropic scattering in a spherically 

symmetric medium can be expressed as: 

, 1 1 ,
,

2
,    (22) 

where , 	 is the radiation intensity, which is a function of the position and direction, μ is the cosine of 

the angle between the direction Ω of the beam and the extension of the radius vector r,  is the 

intensity of a black body radiation at the temperature of the medium. The last term on the right hand side 

of equation (22) represents the variation in the radiation intensity in the medium, due to scattering from 

the incoming direction . In the discrete ordinate method, the RTE is approximated by discretizing the 

entire incident solid angle using a finite number of ordinate directions and the corresponding weight 

factors [103, 104, 111, 106]. Therefore, the integrodifferential equation (22) is written for each ordinate 

and the integral term is replaced by a quadrature summed over each ordinate. Finally, the equation 

reduces to a discrete system of differential equations, sufficient to solve for the radiation intensity ( ) at 

every location within the medium. The set of equations results in:  
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1 1

2
          (23) 

where the subscript i denotes the quadrature points (ordinate directions) and w  is a weighting factor. 

Once the radiation intensity is known, the local radiative heat flux ( ) can be determined based on the 

following expression: 

2 , 2                   (24) 

In order to solve the governing equations, the control volume technique, which employs an 

implicit scheme based on the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm 

[94], was used. Commercially available software Ansys/Fluent v12 was employed for the calculations. 

The second order upwind scheme was employed to discretize the momentum equations while the 

PRESTO (Pressure Staggering Option) scheme was adopted for pressure correction via the continuity 

equation. The energy equation was discretized using the First Order Upwind scheme. The under-

relaxation factors for pressure, density, body force, momentum, liquid fraction update, energy and the 

radiative transfer equation were 0.4, 0.7, 0.7, 0.6, 0.8, 1 and 1 respectively. Scaled absolute residuals of 

10 , 10  and 10  were set as the convergence criteria for continuity, velocity components and 

energy, respectively. The domain was discretized based on a structured grid consisting of 8616 cells with 

a refined mesh distribution in the vicinity of the inner shell wall. In order to obtain appropriate 

convergence of the solution, the Navier-Stokes equations were disabled during the early periods of the 

process until the first melt layer was created. 

4.2. Validation of the Numerical Solution 

The influence of the grid size on the accuracy of the numerical solution has been analyzed by the 

time dependent distribution of two properties within the domain. The mass average solid fraction and the 

center point dimensionless temperature (Θ ) have been plotted (as seen in Figure 37) as a function of the 

dimensionless time (SteFo) for different grid sizes for the case with 25  and 25 . 
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Figure 37 Influence of the grid size on the thermal variables of the model 

 

From the solid fraction curves of Figure 37, it is observed that faster melting is predicted when a 

coarse grid is used. It is also shown that the solution tends to the same value when the element size 

decreases. Even though, the grid independence test has been performed in the capsule with 0.025 , 

its validity can be extended to the study cases with different capsule sizes, because of the fact that the grid 

element size was kept approximately constant in all the calculations. To do that, the base computational 

domain (capsule with 0. 025 ) has been subdivided into five different zones which have been 

geometrically parameterized based on the shell dimensions and then used to estimate the number of 

elements needed for the outer shell sizes. A grid distribution of 8616 cells, where the minimum and 

maximum element sizes are 0.33 0.22  and 0.25 0.56  (width x height) respectively, was found 

sufficient to achieve independence of the solution. 

The accuracy of the numerical approach implemented to solve the radiative heat transfer equation 

has been tested by solving the problem reported by Viskanta and Merriam [51]. The problem consists of 

an absorbing, emitting and scattering gray medium confined in the space between two black, diffuse, 

concentric spherical surfaces. Uniform temperatures  and  are imposed on inner and outer surfaces 

respectively, with .  
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Figure 38 Schematic of the concentric spheres 
system 

Table 5 Dimensionless total and radiative heat 
fluxes 

 

 
Inner wall  Outer wall 

Ψ  Φ   Ψ  Φ  

1 4.257a 0.807a  1.064a 0.202a 

4.252b 0.805b  1.063b 0.201b 

2 6.070a 0.709a   1.517a 0.160a 

6.076b 0.733b   1.519b 0.159b 

3 7.408a 0.618a   1.852a 0.127a 

7.462b 0.620b   1.865b 0.129b 

4 8.440a 0.549a   2.110a 0.106a 

8.511b 0.551b   2.128b 0.107b 

10 11.341a 0.322a   2.834a 0.052a 

11.455b 0.319b   2.864b 0.052b 
 

a) Predictions from the present model 
b) Values reported in ref. [51] 

 

A schematic of this problem is shown in Figure 38. The steady-state, one-dimensional, 

axisymmetric energy conservation equation was solved numerically using the control volume technique, 

while the DOM [104, 102] was used to solve the RTE.  

Numerically predicted dimensionless total (Ψ ) and radiative (Φ ) heat fluxes at each surface of 

the system for different optical depths ( ) obtained from our simulations of the same problem are 

presented in Table 5. It is shown that with the increase of the optical thickness ( ), the radiant heat flux 

decreases and the interaction between the two energy transport modes generates an increase of the 

conductive flux. In this system, a strongly absorbing medium is heated essentially at the inner surface 

increasing the emission of heat that needs to be transported by conduction because it cannot be absorbed 

within the medium.  

The effect of the inner sphere radius on the temperature distribution of the system is depicted in 

Figure 39. The ratio between the cold and hot temperatures is plotted against a normalized distance 

between the spherical shells, It may be seen that, as  increases, the space between the shell decreases and 

the temperature variation across the system becomes more linear. In the figure, the numerical solutions 

reported by [51] are also displayed and show a reasonably good agreement with the present results. 
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Figure 39 Effect of the geometric parameter (ξ =R1/R2) on the temperature distribution 

 

The theoretical model was validated by experimental measurements of the temperature response 

of standard grade NaCl by the American Chemical Society (ACS), contained in a closed porcelain 

crucible during the sensible heating and phase change processes. A muffle furnace was used to thermally 

cycle the sample while continuous temperature measurements at the center of the sample and the wall of 

the porcelain crucible, were recorded. Material compatibility issues between the thermocouple probe and 

the salt were anticipated because of the presence of air at elevated thermal conditions. The corrosion of 

the thermocouples and consequently, its effect on the data reliability, was overcome by using ungrounded 

K-type thermocouples with an Inconel sheath.  

In	the	numerical	solution,	the	wall	temperature	profile	obtained	from	the	experiments	was	

used	 as	 a	 transient	 boundary	 condition	 for	 the	 container	 outer	 surface.	 Based	 on	 that,	 the	

temperature	 response	 of	 the	PCM	at	 10mm	 from	 the	 inner	 bottom	 surface	 of	 the	 crucible	 in	 the	

axial	line	has	been	calculated.	Reasonably good agreement was found.  

A detailed description of the experimental procedure and the comparison between the numerical 

and experimental results has been reported by Archibold et al. [112]. 
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4.3. Results and Discussion for Melting 

Ten different cases were analyzed in this study as summarized in Table 6. The effect of optical 

thickness ( ) by changing the absorption coefficient ( ), on the melting process for a constant capsule 

size, is considered in cases 1 to 4. It should be pointed out that the first case was chosen as the limiting 

case in which 0 and the emissivity ( ) at the inner surface of the shell was also equal to zero. It may 

be noticed that the Planck number ( /4 ) also varies in these study cases. In cases 5 

and 6, the effects of optical thickness and Grashof number (Gr) are analyzed by manipulating the capsule 

size. In the present model it was assumed that the mean beam length is the inner radius of the shell, 

therefore the optical thickness can be calculated from the equation: , where  is the 

scattering coefficient. Cases 7 and 8 have been included in order to evaluate the combined influence of 

the Grashof and Stefan numbers on the thermal performance of the system, as the outer wall temperature 

( ) changes. The effect of scattering albedo ( / ) is analyzed in cases 9 and 10. The 

present study is mainly directed to the analysis of the energy interactions that can occur in an attenuating 

and emitting thermal storage medium. 

Table 6 Analyzed parameters in melting with participating radiation 

	 	 Δ 	    

1 0.02 25 0 0 0 0 1.7x106 0.063 

2	 0.02	 25	 25 0 0.5 0.03 1.7x106 0.063 

3	 0.02	 25	 100 0 2.0 0.13 1.7x106 0.063 

4	 0.02	 25	 200 0 4.0 0.25 1.7x106 0.063 

5	 0.025	 25	 200 0 5.0 0.25 3.3x106 0.063 

6	 0.03	 25	 200 0 6.0 0.25 5.7x106 0.063 

7	 0.02	 20	 100 0 2.0 0.13 1.3x106 0.050 

8	 0.02	 15	 100 0 2.0 0.13 9.9x105 0.038 

9	 0.02	 25	 10 15 0.5 0.03 1.7x106 0.063 

10 0.02 25 10 90 2.0 0.13 1.7x106 0.063 
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Figure 40 Influence of the absorption coefficient on 
the total heat rate at the inner wall 

 
 

Figure 41 Influence of the absorption coefficient on 
the radiative heat rate at the inner wall 

 

The timewise variation of the total and radiant heat transfer rates at the inner surface of the shell 

are depicted in Figure 40 and Figure 41. Four cases with different absorption coefficient values have been 

used to analyze the influence of the optical thickness on the heat transfer at the wall. It may be observed 

from the ordinate values of each figure that, the contribution of the radiant heat to the total energy 

exchange is one order of magnitude smaller. A possible explanation is that, under the investigated thermal 

conditions ( / 0.977) the contribution of the participating thermal radiation does not play a first 

order role during the melting process as the energy transfer by natural convection does. 

Even though, the overall contribution of the radiant heat flux on the net energy transport process 

was found to be small, the increase of the medium optical thickness increases the radiant heat transfer 

distribution at the inner wall, particularly when the absorption coefficient changes from 25  to 

100 , as seen in Figure 41. These differences on the radiant heat flux are responsible for the trend 

observed in Figure 40, where the net heat rate distribution of the limiting case is slightly smaller than 

predicted for the study cases where thermal radiation was included. It should be noticed that the trend 

followed by all the curves in Figure 40 also characterizes the behavior of the heat transfer distribution 

during the melting process at lower temperatures (as seen in Figure 8). 	 	
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Figure 42 The effect of κa on the center point 
temperature response 

 
 

Figure 43 The effect of Ri on the total heat rate at 
the inner wall 

 

Therefore, no attempt to describe the dynamics of Figure 40 is made, because it has been 

previously discussed in section 2.3. 

Figure 42 depicts the average temperature of the center point of the capsule during the process. 

Each curve can be subdivided into three different zones: the solid phase sensible heating portion 

(790.7 800.2 ), the phase change (800.2 800.7 ) and liquid phase sensible heating 

(800.7 825.7 ). Special attention should be paid to the temperature response of the system 

during the solid phase heating. It can be observed that the time to reach 800.2  at the center point is 

78.6% faster in case 3 ( 100 ) as compared to the study case with no radiation. The results show 

that the presence of radiation during this period significantly enhances the heating process, based on the 

fact that, during this period the process is characterized by radiation and conduction heat transfer with 

radiation being the dominant heat transfer mode. 

Figure	43 illustrates the combined influence of the Grashof number and the optical thickness on 

the total heat transfer rate at the inner surface of the shell. Three different shell sizes have been analyzed 

( 20, 25	 	30 ). As expected, by increasing the shell size, the total heat transfer rate increases. 

The larger the capsule, the larger the available heat transfer area for the energy transfer.	 	
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Figure 44 The effect of Tw on the melt fraction rate 

 
 

Figure 45 The effect of Tw on the radiant heat rate 
at the inner wall 

 

Also, with the increase of the capsule size, the Grashof number increases as well, enhancing the 

contribution of natural convection. Simultaneously, the optical thickness of the medium becomes larger 

by increasing the path length over which radiation must travel. Under these conditions, the neighboring 

elements of the inner wall surface are mainly influenced by radiant energy interactions. 

The effect of the shell outer surface temperature was examined by analyzing cases 3, 7 and 8. A 

20 mm inner radius pellet was subjected to three different boundary condition values above the PCM 

melting temperature. The predicted liquid mass fraction of the aforementioned cases is depicted in Figure	

44. As expected, faster melting was achieved with higher values of the shell outer wall temperature. The 

melting time was 20% shorter for Case 7 (Tw-Tm=20°C) and 33% shorter for Case 3 (Tw-Tm=25°C) when 

compared to the corresponding value of case 8 (Tw-Tm=15°C). The influence of the outer wall 

temperature on the radiant heat transfer rate at the shell inner wall is shown in Figure	45. During the 

period, 0 t 4.0	min, the radiation heat transfer rate increases with an increase of the outer wall 

temperature. However, after this interval all the curves cross each other and an inverse trend is observed. 

The thermal equilibrium is reached sooner in the case with a high wall and PCM melting temperature 

difference (higher Stefan and Grashof numbers). 	 	



www.manaraa.com

61 
	

 

Figure 46 Melt fraction as a function of the controlling parameters 

	

The predicted melt fraction for all the analyzed study cases has been plotted as a function of the 

controlling parameters in Figure 46. A dimensionless group that includes the Fourier, Grashof, Stefan and 

Planck numbers, as well as the absorption optical thickness, ( ) and single scattering albedo has 

been created and used as the abscissa in the graph. The following equation is proposed to be used to 

correlate the melt fraction of all the analyzed cases: 

1.07 0.35
.

               (25) 

It was found that for 0.5, 0.25, 0.01, 0.015		 		 0.025, all the data 

merged together in a single line. A dimensionless group that includes the contribution of thermal radiation 

at the inner wall of the shell has been defined as: 

                          (26) 

The above quantity includes the modified Nusselt number which has been calculated based on the 

predicted total heat transfer rate at the inner wall. The aforementioned group has been plotted, for each 

study case, as a function of the same dimensionless number used in Eqn. (25) in Figure 47. All the results 

practically merge into a single curve for the exponents:	 	
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Figure 47 Nusselt number as a function of the controlling parameters 

	

0.5, 0.25, 0.01, 0.015		 		 0.025. The following piecewise correlation 

for the Nusselt number dimensionless group is proposed: 

1.472 11.89 0.04 0.08

0.5 2.5 . sin 0.07 0.55 , 0.08 0.52

0.753 0.205 0.0012 , 0.52 3.5

      (27) 

where: . The range of validity of the above correlations can be defined as: 

0.038	 	 	 	0.063 , 9.9	 	10 	 	 	 	5.7	 	10  , 0.03	 	 	 	0.25 , 0.5 6.0 , and 

0.6 0.9. 

In order to quantify the contribution of the participating thermal radiation during the melting 

process, an enhancement factor (ϵ) has been defined as the ratio between the total and the combined 

conduction and convection heat transfer rates. This quantity may be used to take into consideration the 

influence of thermal radiation in the thermal modeling of storage tanks containing encapsulated PCMs. In 

these models, the effective thermal conductivity method is commonly used to estimate the energy transfer 

process between the heat transfer fluid and the PCM capsule. Figure 47shows the enhancement factor for 

case 3.	 	
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Figure 48 Predicted melting rate in the absence of 
free convection 

 
 

Figure 49 Heat transfer distribution at the inner 
wall in the absence of free convection 

 

In order to extend the discussion about the relative significance of thermal radiation over 

conduction in the absence of natural convection, separate calculations have been performed to predict the 

melting process of NaCl confined in a spherical capsule. In the calculations, heat transfer during phase 

change has been analyzed considering heat conduction as the sole energy transport mode as well as the 

simultaneous radiation and conduction. Figure	48 shows the predicted melting rate for both models under 

the same operating conditions. Also, in the figure, the results from the natural convection dominated 

process (study case 3) have been included in blue color. A secondary graph has been included in Figure 

48 with a smaller range in the abscissa in order to facilitate the comparison between the models with 

faster melting times.  

It may be seen that, for the same shell size, thermal boundary conditions and PCM, the 

simultaneous interaction of thermal radiation with conduction decreases the melting time by a factor of 

five as compared with the pure conduction solution. The same reduction level is observed when natural 

convection participates in the process, and it is compared with the combined radiation and conduction 

model. Figure 49 depicts the time wise variation of the radiative and conductive energy transport 

contributions at the shell inner wall for the combined radiation and conduction model.  
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Figure 50 Enhancement factor during melting in the absence of free convection 

 

As expected, at the wall and at t=0, the conductive heat is maximum because of the highest 

temperature difference within the system. As the temperature gradient decreases with time, the energy 

transferred to the wall by conduction also reduces. The monotonic decrease with time that characterizes 

the pure conduction melting is observed. On the other hand, radiative heat transfer is characterized by a 

linear distribution during the process that rapidly exceeds the contribution of conduction until the end of 

the process. Figure 50 shows the enhancement factor that the participating thermal radiation exerts over 

the pure conduction solution, at the inner shell wall. The factor ( ) has been calculated based on the 

values reported in Figure	 49, for the combined radiation-conduction model. It may be observed that 

higher values are obtained as compared with the same factor in the presence of natural convection. 

In order to graphically illustrate the melting process when natural convection is present along 

with conduction and radiation, the predicted solid fraction, streamlines and temperature contours for study 

case 5 are presented in composite diagrams illustrated in Figure 51. A 2-D, coordinate system has been 

used to locate each plot in the figure and provide a quantitative measure of the location and shape of the 

melting interface. The predicted solid/liquid interface evolution of the combined radiation and conduction 

model is presented in Figure 51h. The classical concentric ring shape solution is observed which may be 

applicable in situations where the gravity is not present.   
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a) 20s 

 

 
b) 40s 

 

 
c) 80s 

 

 
d) 120s 

 

 
e) 220s 

 

 
f) 400s 

 

 
g) 480s 

 

 
h)  
 

 

Figure 51 Predicted evolution of the melting process for study case 5  
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4.4. Results and Discussion for Solidification 

Simultaneous conduction, convection and thermal radiation have been analyzed during the 

freezing of a non-opaque, gray phase change material (PCM) encapsulated in a closed spherical container 

and heated to relatively high temperatures (782≤T≤822 ). In contrast to the conventional conduction-

dominated model of the single phase Stefan problem, in the present study the influence of the 

participating thermal radiation and the buoyancy induced natural convection within the melt layer is 

highlighted and analyzed. The effect of the shell size has also been analyzed. 

A two-dimensional, axisymmetric, transient model has been solved numerically. The considered 

system is schematically shown in a cross sectional view in Figure 52. It consists of an opaque, gray and a 

diffuse spherical shell of inner radius  and wall thickness δ. Initially, the shell internal volume is 

completely filled with liquid PCM, at temperature 822 , which is higher than the storage material 

melting temperature . At time t>0, the outer boundary surface, whose emissivity was set to unity, is 

subjected to a convective boundary condition characterized by a heat transfer coefficient  and a free 

stream temperature 782 , which is lower than . The PCM is treated as a semitransparent, gray, 

medium being emitting and absorbing. Temperature dependent density within the liquid PCM has been 

considered only in the body force terms of the momentum equations to account for natural convection in 

the melt layer. The scattering of thermal radiation has been neglected. The melting of NaCl takes place in 

the interval between 801  and 802 .	

	

 

Figure 52 Schematic representation of the NaCl freezing model  



www.manaraa.com

67 
	

 
a) 30s 

 

 
b) 60s 

 

 
c) 90s 

 

 
d) 300s 

 

 
e) 600s 

 

 
f) 900s 

 

 
g) 1200s 

 

 
h) 1380s 

 

Figure 53 Evolution of the NaCl freezing process  
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Figure 54 Velocity distribution along the horizontal 
radius at elevated temperatures 

 
 

Figure 55 Heat transfer distribution at the inner 
shell wall at elevated temperatures 

 

Predictions of the evolution of the solidification process at various time instants are presented in 

Figure 53. Moreover, the vertical velocity component along the horizontal radius of the capsule during 

early times is presented in Figure	54. 

In the following discussion, the information presented in Figure 53 and Figure	 54 is used to 

describe the trend followed by the time wise variation of the radiative and conductive-convective heat 

transfer through the shell inner wall, shown in Figure	55. During the first 30s, the combined conduction-

convection heat transfer decreases, suggesting that the heat is mainly transported by conduction through 

the shell wall. As discussed in section 3.3, the reason is that; initially the melt layer is stagnant and it 

takes some time to develop a thermally unstable condition that drives the buoyancy induced flow.  

Once this condition is developed, heat is transferred from the melt layer to the outer wall by free 

convection through the recirculating flow. Consequently, the combined conduction-convection heat 

transfer rate is expected to increase during this period. From Figure	55, it can be observed that, during the 

period from 30s to 60s the energy contribution from conduction and convection increases. The evidence 

that support the aforementioned trend is the circulating flow represented by the streamline contours at the 

right-hand side of Figures 53a and 53b.	 	
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Additionally, the high-velocity magnitudes reported in Figure 54 during the same period (30s-

60s) may be used to support the trend. Essentially, during this time scale, natural convection heat transfer 

dominates the energy transfer through the shell wall by the fluid motion, thereby arresting the decrease of 

the temperature gradient in the vicinity of the inner wall. 

After 60s, the temperature near the inner wall reaches the phase change temperature and the first 

layer of solid PCM is created. Consequently, the temperature gradients that originally induced the 

buoyancy flow are no longer present. As a result, the combined conduction-convection heat transfer rate 

is characterized by monotonic decrease with time, associated with the pure conduction behavior of the 

single phase Stefan problem. Figure	54 shows that, after 60s, the velocity magnitude across the liquid 

core is close to zero. Also the left hand side of Figure 53c, illustrates the concentric ring shape 

temperature contours in the vicinity of the inner wall. 

Attention will now be turned to describe the trend followed by the radiative heat transfer rate. 

Initially, the radiation transfer rate starts from a maximum value, because, the initial temperature of the 

system is the highest in the process. The emissive power at the inner surface of the shell is a function of 

temperature. As discussed previously, the temperature at the vicinity of the inner shell quickly decreases 

to a value close to the PCM melting temperature within the first 60s. Consequently, the sharp decrease of 

the radiation transfer rate observed during this period is fully expected. 

After 60s and until the end of the freezing, the inward solidification changes the process 

dynamics by incorporating an absorbing media that continuously increases its path length (solid phase) 

and an emitting media that continuously shrinks in size (liquid phase). By definition, the ability of a path 

length to attenuate radiation of a given wavelength is the optical thickness ( ). Under the analyzed 

conditions (uniform medium with absorption coefficient independent of temperature) the optical thickness 

depends directly on the extinction coefficient and the thickness of the medium. Since the extinction 

coefficient for the whole PCM is uniform (100 ) then the absorption of radiation intensity along the 

path is controlled by the thickness of the region, in this case, the solid phase.	 	
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Figure 56 Enhancement factor during freezing of NaCl 

	

Consequently, if the thickness of the solid phase is smaller than the attenuation distance (distance 

traveled by radiation intensity before being absorbed or scattered within the medium), then the thermal 

radiation can pass through it and reach the inner surface of the shell. Therefore, the increase of the 

radiation heat transfer rate with the time, from 1minute to 10 minutes is fully expected.  

As the solidification process proceeds, the solid phase increases its size, and the medium becomes 

optically thick. Consequently, the thermal radiation emitted from the liquid phase is attenuated within the 

solid phase at some point before it reaches the inner surface of the shell. Therefore, the radiation heat 

transfer rate, at that location, decreases with time. It should be noticed that, even though the radiation heat 

transfer rate decreases with time during this period, its absolute value is higher than the contribution from 

conduction. 

Figure 56 shows the enhancement factor of radiation heat transfer over the combined conduction-

convection energy transports at the inner shell wall. It may be observed that, except for the early periods 

of the process where natural convection is the dominant heat transfer mechanism and the latest stages 

where the thermal radiation that arrives at the inner surface decreases, the enhancement factor 

continuously increases from 1.1 to 2.5.  
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Figure 57 Influence of the absorption coefficient on the solid fraction rate 

	

The influence of the PCM absorption coefficient ( ) on the freezing rate is presented in Figure 

57. It can be inferred from the figure that, the solidification time decreases 48.4% as the absorption 

coefficient increases from 0 to 100 . A fraction of the emitted radiation intensity from the liquid layer 

is attenuated by absorption in the solid medium path length which results in faster cooling of the liquid 

PCM and therefore faster freezing. No significant difference was observed in the melt fraction rate when 

the absorption coefficient changes from 100 to 200 . 
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CHAPTER 5: MULTI CAPSULE MODEL 

5.1. Introduction 

In previous chapters, primary attention was directed to analyze the influence of energy transport 

mechanisms on melting and solidification of a confined storage material at different operating 

temperatures. Chapter 2 outlined the heat transfer analysis during melting of a storage material, in 

partially and completely filled capsules. The corresponding analysis during the freezing process was 

analyzed and discussed in chapter 3. Chapter 4 treated the role of thermal radiation in melting and 

solidification of a PCM at elevated temperatures (+800 ). However, the aforementioned analysis was 

limited to the thermal characterization of a single constituent storage module rather than an entire storage 

system. 

A practical scenario of the analyzed thermal storage system consists of an arranged porous bed of 

capsules held in a cylindrical container through which a heat transfer fluid flows and transports energy to 

or from the PCM material contained within the capsules. Figure 58 shows a sectional view of the system. 

 

 

Figure 58 Schematic representation of the packed bed heat exchanger 



www.manaraa.com

73 
	

 

 
 
 
 
 

Figure 59 Radial section of the system showing the 
concentric distribution 

 
 

Figure 60 Axial section of the system showing the 
vertical distribution 

 

In addition to experimental studies, numerical analysis based on the enthalpy method, apparent 

heat capacity technique and dispersion model have been widely used in the study of melting and freezing 

of an energy storage material confined in this type of heat exchangers. Some of them are listed in the 

following references [113, 16, 114, 115, 116]. However, the missing characteristic in all of them is the 

precise consideration of the simultaneous energy transport modes inside the capsule that control the PCM 

melting or solidification, due to forced convective energy flow from the heat transfer fluid at the outer 

capsule wall. 

A simplified model for the thermal assessment of a packed bed heat exchanger by including 

simultaneous conduction, natural convection and thermal radiation within the energy storage material, as 

well as, forced convection at the outer shell surface is presented in this chapter. The influence of the inlet 

mass flow rate and inner shell surface emissivity on the melting dynamics of the process was analyzed. 

5.2. Physical Situation and Model Assumptions 

The following assumptions are made to simplify the mathematical model. (1) The capsules are 

oriented concentrically and vertically along the radial and axial directions (as seen in Figures 59 and 60). 

(2) Fluid flow distribution is uniform along the radial direction of the system. (3) Axial heat conduction 

due to contact between the capsules is negligible. This assumption follows from the fact that the capsules 

have a point contact.  
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Figure 61 Schematic of the multi-ball model. 
 

Also, a uniform separation distance of 1mm between the capsules was assumed. (4) The heat loss 

from the storage tank to the surroundings is assumed to be negligible. Thus, an insulated boundary 

condition was assumed at the side wall of the domain. 

Since the capsules and HTF mass flow rate were assumed to be evenly distributed along the radial 

direction, a single capsule column may be considered as a representative case of the whole system. 

Consequently, the mass flow rate ( ) that characterizes the inlet boundary condition in the simplified 

model is a fraction of the total mass flow rate in the bed, and is defined in Eqn. 28. 

                            (28) 

where  is the total mass flow rate of the complete system and  is the number of capsules contained in 

a radial cross sectional view of the bed. In this context, two-dimensional axisymmetric flow conditions 

were assumed for the analysis. Figure 61 shows schematic of the system.   
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It consists of six, 1inch inner-diameter, spherical capsules vertically aligned along the symmetry 

line of the domain. The capsules are initially filled with solid NaNO3 at a temperature 286 . 

Uniform mass flow rate ( 3 10 / ) and free stream temperature ( 326 ) characterize the 

thermal boundary condition at the domain inlet, while the atmospheric pressure ( ) was defined at the 

outlet surface. Teflon PTFE (Polytetrafluoroethylene) was selected as the shell material for all the 

capsules with 0.5mm thickness. 

It should be pointed out that the velocity distribution of the HTF determines the convective 

component of the thermal energy transfer within the boundary layer at the outer surface of each capsule. 

Therefore, the nature of the flow has a significant effect on the external convective heat transfer rate. The 

ability to model the external convective energy transport is one of the key contributions of this model as 

compared to the previously reported models where the boundary condition at the outer shell surface is 

either a constant temperature or uniform heat flux. 

5.3. Computational Details of Multi-Capsule Model  

The numerical computations presented in this investigation were performed in commercially 

available software ANSYS/Fluent, using the finite volume approach to solve for the continuity, linear 

momentum and energy partial differential equations. The combined heat transfer problem, including the 

solid/liquid phase change was solved using the SIMPLE algorithm. A first order implicit discretization 

scheme was used for the transient terms while the convective and diffusive terms were discretized using a 

second order upwind scheme. 

According to Eisfeld and Schnitzlein [117], the transition from laminar to turbulent flow regime 

in packed bed heat exchangers exists for the particle Reynolds number (  between 10 to 300. 

                           (29) 

where  and  are the fluid density and viscosity.  is the average superficial velocity of the HTF though 

the bed and  is the equivalent particle diameter, defined as the ratio between the bed volume and the 

total capsule surface area. The Reynolds number is written in terms of the mass flow rate. 
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Figure 62 Grid distribution multi-ball model 

	

4
	
6 1

                      (30) 

where  is the diameter of the cylindrical container,  the void fraction of the packed bed and  is the outer 

diameter of the capsule. For the flow conditions analyzed in this chapter, the Reynolds number was found to 

be in the range between 80 and 200. Therefore, in order to model the transitional flow of the HTF, the 

Reynolds-averaged Navier-Stokes (RANS) approach was used. 

The realizable k-epsilon model proposed by [118] was employed while the enhanced wall 

treatment option was adopted. A second order upwind discretization scheme was used for the turbulent 

kinetic energy and dissipation rate. The PRESTO scheme was adopted for pressure correction via the 

continuity equation. The under relaxation factors for pressure, density, body forces, linear momentum, 

turbulent kinetic energy, turbulent dissipation rate, turbulent viscosity, liquid fraction update and energy 

were 0.3, 1.0, 1.0, 0.7, 0.8, 0.8,1.0, 0.9, and 1.0, respectively. 

The solution of the problem was checked for convergence at each time step. Figure 62 shows the 

grid distribution for the first two capsules of the computational domain. The system was discretized in 

30336 quadrilateral elements with maximum aspect ratio of 6.0. A finer near wall mesh capable of 

resolving the viscous sub-layer was implemented in the vicinity of the insulated and outer surface walls.
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5.4. Validation of the Multi-Capsule Model 

The numerical model was validated by the experimental results reported by [96]. A schematic of 

the experimental set up is presented in Figure 63. Atmospheric air at a volumetric flow rate of 110m3/hr 

and 27  is forced to pass through a heated section by a centrifugal blower. The heated section consists of 

six electrical heaters that dissipate 36KW of heat and delivers hot air to the packed bed cylindrical section 

where 770 spherical capsules filled with Sodium Nitrate were randomly packed. Thermocouples were 

placed along the radial and axial directions of the test section. It should be pointed out that along the 

center line of the bed; thermocouples at four different bed heights (L/D=0.2, 0.4, 0.6 and 0.8 from bottom 

to top of the bed) were located inside the capsules. The temperature readings at two of those locations are 

presented in Figure 64. 

The common stages that characterize the temperature history during melting are observed, e.g. 

solid phase sensible heating where the temperature increases with time followed by a sharp change in 

slope with and almost horizontal trend indicating phase change and the liquid phase sensible heating 

where temperature increases with time. The temperature history predicted by the numerical solution is 

also depicted in Figure 64. Reasonable agreement is observed. 

 

 
 
 
 
 

Figure 63 Schematic of the experimental set up. 
Taken from ref. [96] 

 
 

Figure 64 Comparison between numerical results 
and experimental measurements 
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5.5. Results and Discussion  

The multi-capsule model was used to predict the melting dynamics of NaCl under different 

thermal conditions. Simultaneous conduction, natural convection and thermal radiation heat transfer were 

included in the model, and the influence of mass flow rate and inner surface emissivity on the melting rate 

is presented in Figures 65 and 66. Each figure also includes a secondary graph showing the effect of each 

parameter on the freezing time. A non-linear effect of both parameters on the melting time is observed 

with faster melting as the surface emissivity and inlet mass flow rate increase. 

It is observed that, the melting time decreases 9.2%, 17% and 23% in the cases where the inner 

surface emissivity increases from 0.1 to 0.3, 0.6 and 1.0 respectively. On other hand, the melting time 

decreases 25%, 36% and 42% in the cases where the inlet mass flow rate increases from 0.0005kg/s to 

0.001 kg/s, 0.0015 kg/s and 0.002 kg/s respectively. The emissive power at the inner surface as well as 

the convective heat transfer between the HTF and the capsule are responsible for this trend. 

Figure 67 presents the evolution of the melting process. Each plot illustrates the temperature 

distribution on the left side and the streamline contours on the right side, for both the PCM and the air that 

is flowing outside the capsules. Also the solid fraction is depicted on the right hand side of each plot. 

 

 
 

Figure 65 Influence of the absorption coefficient on 
the melt fraction rate 

 
 

Figure 66 Influence of the mass flow rate on the 
melt fraction rate 
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Figure 67 Evolution of the melting process for NaCl 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions for Chapter 2 

 It was found that the Grashof and the Stefan numbers strongly enhance the melt fraction 

rate of NaNO3. For a fixed Grashof number (2.6 10 ), faster melting is achieved when the 

Stefan number is changed from 0.072 to 0.122. The melting time decreases 24.7% and 

40.8% when the Stefan number increases from 0.072 to 0.097 and 0.122 respectively. Also, 

increasing the Grashof number from 2.69 10  to 4.21 10  for a fixed Stefan number 

enhances the melt fraction rate. 

 A strong influence of the Prandtl number on the melt fraction rate was found under constant 

Grashof and Stefan numbers. 

 It was found that when the shell material parameter (χ) is in the range of 0.966-0.994 there 

is no significant difference in the total time to complete melting, under the analyzed 

conditions. However a 34.1% increase in the melting time is observed for χ=0.67 as 

compared to the previous range. 

 Under the analyzed thermal conditions, the sub-cooling parameter plays no significant role 

in the melting process for the analyzed conditions (1 to 15  below the PCM melting 

temperature). 

 A counter-clockwise recirculating cell is formed in the top portion of the shell that causes a 

more intensive melting in the upper part of the solid phase. The location of the eye of the 

recirculation pattern was found to be dependent on the Grashof number and moves toward 

the inner surface of the shell as natural convection is intensified.  
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6.2. Conclusions for Chapter 3 

 In the presence of all the fundamental heat transfer mechanisms, it was found that the 

contribution of thermal radiation on the solidification process of NaNO3 is to reduce the 

solidification time by 17% as compared with the limiting case where thermal radiation has 

been intentionally neglected. 

 The presence of natural convection induces the initial formation of an asymmetrical solid 

PCM layer from the bottom of the capsule. It is believed that this factor is responsible for 

the slight variation in the solid layer thickness along the shell symmetry line, with the 

smallest layer thickness at the top and the greatest layer thickness at the bottom. 

 As the Biot number decreases from 5.0 to 1.0, the freezing time increases from 28.5 to 

57.8min. However, a significantly smaller difference in the freezing times was observed 

when the Biot number decreases from 10 to 5. 

 For a fixed thermal boundary condition, the solidification time decreases by 21.23% to 

60.92% as Ri decreases from 35mm to 25mm and 15mm respectively. 

6.3. Conclusions for Chapter 4 

 The contribution of radiant energy exchange at the inner shell wall is one order of 

magnitude smaller than the convective transport process. This is valid for a NaCl with 

100  encapsulated in a spherical capsule with 25  and subjected to a 

constant temperature boundary condition at the outer surface, 25 . 

 For a fixed capsule size and temperature difference ∆T, the total heat transfer rate at the 

inner surface of the shell increases by increasing the medium optical thickness. It was 

found that, the presence of thermal radiation reduces the melting time by 10% as compared 

to the case with no radiation. However, a significant contribution of radiant heat transfer 

was found during the solid phase heating process, even for small optical thicknesses.
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The time to reach 800.2  from 790.7  at the center point is 78.6% faster when κ

100m  as compared to the case with no radiation. No further improvements were 

obtained when the absorption coefficient increased from 100 to 200m . 

 For a fixed absorption coefficient and temperature difference ∆T, the increase of the 

capsule size significantly increases the melting time and radiant heat transfer at the inner 

surface of the shell. The melting time for the capsule with R 0.030m is 27.2% and 

64.5% higher as compared to that for the shells with R 0.025m and R 0.020m 

respectively. 

 The increase of the outer wall temperature significantly enhances the melting process. The 

melting time was 20% shorter for Tw-Tm=20°C and 33% shorter for Tw-Tm=25°C as 

compared to the corresponding value for Tw-Tm=15°C. 

6.4. Conclusions for Chapter 5 

 The melting time decreases by 9.2%, 17% and 23% when the inner surface emissivity 

increases from 0.1 to 0.3, 0.6 and 1.0 respectively.  

 The melting time decreases by 25%, 36% and 42% as the inlet mass flow rate increases 

from 0.0005 kg/s to 0.001 kg/s, 0.0015 kg/s and 0.002 kg/s respectively. 

6.5. Recommendations for Future Research 

The following topics may be outlined as recommendations for future research. 

 Modeling of thermal and pressure induced stresses in the shell for mechanical design of 

packed bed heat exchangers. 

 Thermal modeling of different PCMs and capsule shapes, such us cylinders or rectangular 

containers. And the comparison with the results obtained for spherical shells. 

 The influence of time and position dependent wall boundary conditions on melting and 

freezing dynamics. 
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Appendix A: List of Symbols 

cp   specific heat at constant pressure (J/kg K) 
Δ    temperature difference (°C) ( ) 
Fo   Fourier number ( /ρ cp)(t/Ri

2) 
g    gravitational acceleration (m/s2) 

  Grashof number ( ∆ / ) 
    heat transfer coefficient (W/m2 K) / ∆  
    sensible enthalpy (J/kg) 

   external heat transfer coefficient (W/m2 K)  
L    latent heat of fusion (J/kg) 
n    index of refraction 
Nu   Nusselt number /  
P    pressure (Pa) 
Pl   Planck number /4  
Pr   Prandtl number of the fluid ( / ) 

   total heat transfer rate at the inner shell wall (W) 
  conductive heat flux at the inner shell wall ( / ) 
  convective heat flux at the inner shell wall ( / ) 

   radiative heat flux at the inner shell wall ( / ) 
Ri   inner radius of the capsule (m) 
Ra   Rayleigh number (GrPr) 

  liquid phase Stefan number ( / ) 
  solid phase Stefan number ( / ) 

t    time (s) 
T    temperature (°C) 

    reference temperature (°C) ( /2)  
   free stream temperature (°C) 

    velocity (m/s) 
 
Greek Symbols 

    thermal diffusivity (m2/s)  
    thermal expansion coefficient (1/K) 
    shell material parameter (1 / ) 
    shell wall thickness (m)  
    dynamic viscosity (kg/m s) 
    thermal conductivity (W/m K) 
   absorption coefficient (m-1) 

    latent heat (J/kg) 
Θ    dimensionless temperature at the center point, Θ /  
Θ   dimensionless temperature /  

    density (kg/m3) 
    Stefan-Boltzmann constant, 5.67 10 /  
   scattering coefficient (m-1) 

    optical thickness,  
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φ   dimensionless irradiation 
ξ    dimensionless stream line value 

   scattering albedo, /  
 
Subscripts 
m   melting 
o    initial 
r    radial direction 
s    solid  
w   wall 
θ    angular direction 
Ψ   dimensionless radiative flux at the inner shell wall /  
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